Skip to main content

Near-infrared Deep Brain Stimulation in Living Mice

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2173))

Abstract

Optogenetics has revolutionized the experimental interrogation of neural circuits in the past decade and holds potential for the treatment of neurological disorders. However, optogenetic stimulation of deep brain neurons requires the insertion of invasive optical fibers because the activating blue-green light cannot penetrate deep inside brain tissue. Here we describe a minimally invasive technique for the stimulation of deep brain neurons by transcranial near-infrared light (NIR), where upconversion nanoparticles (UCNPs) are used as optogenetic actuators to locally convert NIR into visible light. We detail the protocol to use locally injected UCNPs to stimulate dopamine neurons in the ventral tegmental area (VTA) of anesthetized mice by transcranial NIR.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  CAS  Google Scholar 

  2. Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16(10):1499–1508

    Article  CAS  Google Scholar 

  3. Hamblin MR (2016) Shining light on the head: photobiomodulation for brain disorders. BBA Clin 6:113–124

    Article  Google Scholar 

  4. Chuong AS et al (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17(8):1123–1129

    Article  CAS  Google Scholar 

  5. Klapoetke NC et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346

    Article  CAS  Google Scholar 

  6. Rajasethupathy P et al (2015) Projections from neocortex mediate top-down control of memory retrieval. Nature 526(7575):653–659

    Article  CAS  Google Scholar 

  7. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71(1):9–34

    Article  CAS  Google Scholar 

  8. Zhang F et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11(6):631–633

    Article  Google Scholar 

  9. Chen S et al (2018) Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359(6376):679–684

    Article  CAS  Google Scholar 

  10. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114(10):5161–5214

    Article  CAS  Google Scholar 

  11. Zhou B, Shi B, Jin D, Liu X (2015) Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 10(11):924–936

    Article  CAS  Google Scholar 

  12. Wanat MJ, Willuhn I, Clark JJ, Phillips PE (2009) Phasic dopamine release in appetitive behaviors and drug addiction. Curr Drug Abuse Rev 2(2):195–213

    Article  CAS  Google Scholar 

  13. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  Google Scholar 

  14. Gunaydin LA et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157(7):1535–1551

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Human Frontier Science Program Postdoctoral Fellowship (LT 000579/201) (S.C.), JSPS (Japan Society for the Promotion of Science) Postdoctoral Fellowship (16F16386) (S.C.), RIKEN Special Postdoctoral Researchers Program (S.C.), Grant-in-Aid for Young Scientists from MEXT (the Ministry of Education, Culture, Sports, Science and Technology of Japan) (16K18373, 18K14857) (S.C.), RIKEN Incentive Research Project Grant for Individual Germinating Research (S.C.), Narishige Neuroscience Research Foundation Grant (S.C.), and Nakatani Foundation Grant Program (S.C.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, S. (2020). Near-infrared Deep Brain Stimulation in Living Mice . In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0755-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0755-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics