Skip to main content

Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling

Part of the Methods in Molecular Biology book series (MIMB,volume 2173)

Abstract

G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.

Key words

  • G protein-coupled receptors (GPCR)
  • G protein
  • Calcium
  • Optogenetics
  • Photopharmacology
  • LOV domain

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0755-8_2
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0755-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3(9):639–650. https://doi.org/10.1038/nrm908

    CAS  CrossRef  PubMed  Google Scholar 

  2. Hauser AS, Attwood MM, Rask-Andersen M et al (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16(12):829–842. https://doi.org/10.1038/nrd.2017.178

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Venkatakrishnan AJ, Deupi X, Lebon G et al (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194. https://doi.org/10.1038/nature11896

    CAS  CrossRef  PubMed  Google Scholar 

  4. Erlandson SC, McMahon C, Kruse AC (2018) Structural basis for G protein signaling. Annu Rev Biophys 47(1)1–18. https://doi.org/10.1146/annurev-biophys-070317-032931

  5. Rasmussen SG, DeVree BT, Zou Y et al (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555. https://doi.org/10.1038/nature10361

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Flock T, Hauser AS, Lund N et al (2017) Selectivity determinants of GPCR-G-protein binding. Nature 545(7654):317–322. https://doi.org/10.1038/nature22070

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Liu X, Xu X, Hilger D et al (2019) Structural insights into the process of GPCR-G protein complex formation. Cell 177(5):1243–1251.e1212. https://doi.org/10.1016/j.cell.2019.04.021

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Ernst OP, Gramse V, Kolbe M et al (2007) Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci U S A 104(26):10859–10864. https://doi.org/10.1073/pnas.0701967104

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Grundmann M, Kostenis E (2017) Temporal bias: time-encoded dynamic GPCR signaling. Trends Pharmacol Sci 38(12):1110–1124. https://doi.org/10.1016/j.tips.2017.09.004

    CAS  CrossRef  PubMed  Google Scholar 

  10. Khan SM, Sleno R, Gora S et al (2013) The expanding roles of Gbetagamma subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev 65(2):545–577. https://doi.org/10.1124/pr.111.005603

    CAS  CrossRef  PubMed  Google Scholar 

  11. Touhara KK, MacKinnon R (2018) Molecular basis of signaling specificity between GIRK channels and GPCRs. elife 7. https://doi.org/10.7554/eLife.42908

  12. DeWire SM, Ahn S, Lefkowitz RJ et al (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510. https://doi.org/10.1146/annurev.physiol.69.022405.154749

    CAS  CrossRef  PubMed  Google Scholar 

  13. Rajagopal S, Shenoy SK (2018) GPCR desensitization: acute and prolonged phases. Cell Signal 41:9–16. https://doi.org/10.1016/j.cellsig.2017.01.024

    CAS  CrossRef  PubMed  Google Scholar 

  14. Weis WI, Kobilka BK (2018) The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem 87:897–919. https://doi.org/10.1146/annurev-biochem-060614-033910

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Luttrell LM, Ferguson SS, Daaka Y et al (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283(5402):655–661. https://doi.org/10.1126/science.283.5402.655

    CAS  CrossRef  PubMed  Google Scholar 

  16. Luttrell LM, Roudabush FL, Choy EW et al (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A 98(5):2449–2454. https://doi.org/10.1073/pnas.041604898

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Strungs EG, Luttrell LM (2014) Arrestin-dependent activation of ERK and Src family kinases. Handb Exp Pharmacol 219:225–257. https://doi.org/10.1007/978-3-642-41199-1_12

    CAS  CrossRef  PubMed  Google Scholar 

  18. O’Hayre M, Eichel K, Avino S et al (2017) Genetic evidence that beta-arrestins are dispensable for the initiation of beta2-adrenergic receptor signaling to ERK. Sci Signal 10(484). https://doi.org/10.1126/scisignal.aal3395

  19. Luttrell LM, Wang J, Plouffe B et al (2018) Manifold roles of beta-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal 11(549). https://doi.org/10.1126/scisignal.aat7650

  20. Grundmann M, Merten N, Malfacini D et al (2018) Lack of beta-arrestin signaling in the absence of active G proteins. Nat Commun 9(1):341. https://doi.org/10.1038/s41467-017-02661-3

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Smith JS, Lefkowitz RJ, Rajagopal S (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17(4):243–260. https://doi.org/10.1038/nrd.2017.229

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Eichel K, von Zastrow M (2018) Subcellular organization of GPCR signaling. Trends Pharmacol Sci 39(2):200–208. https://doi.org/10.1016/j.tips.2017.11.009

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Wacker D, Stevens RC, Roth BL (2017) How ligands illuminate GPCR molecular pharmacology. Cell 170(3):414–427. https://doi.org/10.1016/j.cell.2017.07.009

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A 90(16):7661–7665. https://doi.org/10.1073/pnas.90.16.7661

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Reiner A, Levitz J, Isacoff EY (2015) Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 20:135–143. https://doi.org/10.1016/j.coph.2014.12.008

    CAS  CrossRef  PubMed  Google Scholar 

  26. Banghart MR, Sabatini BL (2012) Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. Neuron 73(2):249–259. https://doi.org/10.1016/j.neuron.2011.11.016

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Banghart MR, Williams JT, Shah RC et al (2013) Caged naloxone reveals opioid signaling deactivation kinetics. Mol Pharmacol 84(5):687–695. https://doi.org/10.1124/mol.113.088096

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Banghart MR, He XJ, Sabatini BL (2018) A caged enkephalin optimized for simultaneously probing mu and delta opioid receptors. ACS Chem Neurosci 9(4):684–690. https://doi.org/10.1021/acschemneuro.7b00485

    CAS  CrossRef  PubMed  Google Scholar 

  29. Williams JT (2014) Desensitization of functional micro-opioid receptors increases agonist off-rate. Mol Pharmacol 86(1):52–61. https://doi.org/10.1124/mol.114.092098

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40(8):4422–4437. https://doi.org/10.1039/c1cs15023e

    CAS  CrossRef  PubMed  Google Scholar 

  31. Schonberger M, Trauner D (2014) A photochromic agonist for mu-opioid receptors. Angew Chem Int Ed Engl 53(12):3264–3267. https://doi.org/10.1002/anie.201309633

    CAS  CrossRef  PubMed  Google Scholar 

  32. Agnetta L, Kauk M, Canizal MCA et al (2017) A photoswitchable dualsteric ligand controlling receptor efficacy. Angew Chem Int Ed Engl 56(25):7282–7287. https://doi.org/10.1002/anie.201701524

    CAS  CrossRef  PubMed  Google Scholar 

  33. Westphal MV, Schafroth MA, Sarott RC et al (2017) Synthesis of photoswitchable delta(9)-tetrahydrocannabinol derivatives enables optical control of cannabinoid receptor 1 signaling. J Am Chem Soc 139(50):18206–18212. https://doi.org/10.1021/jacs.7b06456

    CAS  CrossRef  PubMed  Google Scholar 

  34. Broichhagen J, Podewin T, Meyer-Berg H et al (2015) Optical control of insulin secretion using an incretin switch. Angew Chem Int Ed Engl 54(51):15565–15569. https://doi.org/10.1002/anie.201506384

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Pittolo S, Gomez-Santacana X, Eckelt K et al (2014) An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat Chem Biol 10(10):813–815. https://doi.org/10.1038/nchembio.1612

    CAS  CrossRef  PubMed  Google Scholar 

  36. Zussy C, Gomez-Santacana X, Rovira X et al (2018) Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4. Mol Psychiatry 23(3):509–520. https://doi.org/10.1038/mp.2016.223

    CAS  CrossRef  PubMed  Google Scholar 

  37. Urban DJ, Roth BL (2015) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55:399–417. https://doi.org/10.1146/annurev-pharmtox-010814-124803

    CAS  CrossRef  PubMed  Google Scholar 

  38. Vardy E, Robinson JE, Li C et al (2015) A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86(4):936–946. https://doi.org/10.1016/j.neuron.2015.03.065

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Nakajima K, Wess J (2012) Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol 82(4):575–582. https://doi.org/10.1124/mol.112.080358

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Hu J, Stern M, Gimenez LE et al (2016) A G protein-biased designer G protein-coupled receptor useful for studying the physiological relevance of Gq/11-dependent signaling pathways. J Biol Chem 291(15):7809–7820. https://doi.org/10.1074/jbc.M115.702282

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus-->midbrain pathway for feeding behavior. Neuron 82(4):797–808. https://doi.org/10.1016/j.neuron.2014.04.008

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Palczewski K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75:743–767. https://doi.org/10.1146/annurev.biochem.75.103004.142743

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Zemelman BV, Lee GA, Ng M et al (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33(1):15–22

    CAS  CrossRef  PubMed  Google Scholar 

  44. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. https://doi.org/10.1146/annurev-neuro-061010-113817

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Li X, Gutierrez DV, Hanson MG et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102(49):17816–17821. https://doi.org/10.1073/pnas.0509030102

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Masseck OA, Spoida K, Dalkara D et al (2014) Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry. Neuron 81(6):1263–1273. https://doi.org/10.1016/j.neuron.2014.01.041

    CAS  CrossRef  PubMed  Google Scholar 

  47. Bailes HJ, Zhuang LY, Lucas RJ (2012) Reproducible and sustained regulation of Galphas signalling using a metazoan opsin as an optogenetic tool. PLoS One 7(1):e30774. https://doi.org/10.1371/journal.pone.0030774

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Qiu X, Kumbalasiri T, Carlson SM et al (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433(7027):745–749. https://doi.org/10.1038/nature03345

    CAS  CrossRef  PubMed  Google Scholar 

  49. Spoida K, Eickelbeck D, Karapinar R et al (2016) Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G protein pathways. Curr Biol 26(9):1206–1212. https://doi.org/10.1016/j.cub.2016.03.007

    CAS  CrossRef  PubMed  Google Scholar 

  50. Karunarathne WK, Giri L, Kalyanaraman V et al (2013) Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proc Natl Acad Sci U S A 110(17):E1565–E1574. https://doi.org/10.1073/pnas.1220697110

    CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Makowka P, Bruegmann T, Dusend V et al (2019) Optogenetic stimulation of Gs-signaling in the heart with high spatio-temporal precision. Nat Commun 10(1):1281. https://doi.org/10.1038/s41467-019-09322-7

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Kim JM, Hwa J, Garriga P et al (2005) Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Biochemistry 44(7):2284–2292. https://doi.org/10.1021/bi048328i

    CAS  CrossRef  PubMed  Google Scholar 

  53. Tichy AM, Gerrard EJ, Sexton PM et al (2019) Light-activated chimeric GPCRs: limitations and opportunities. Curr Opin Struct Biol 57:196–203. https://doi.org/10.1016/j.sbi.2019.05.006

    CAS  CrossRef  PubMed  Google Scholar 

  54. Airan RD, Thompson KR, Fenno LE et al (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029. https://doi.org/10.1038/nature07926

    CAS  CrossRef  PubMed  Google Scholar 

  55. Gunaydin LA, Grosenick L, Finkelstein JC et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157(7):1535–1551. https://doi.org/10.1016/j.cell.2014.05.017

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  56. Siuda ER, Copits BA, Schmidt MJ et al (2015) Spatiotemporal control of opioid signaling and behavior. Neuron 86(4):923–935. https://doi.org/10.1016/j.neuron.2015.03.066

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  57. Levitz J, Pantoja C, Gaub B et al (2013) Optical control of metabotropic glutamate receptors. Nat Neurosci 16(4):507–516. https://doi.org/10.1038/nn.3346

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Carroll EC, Berlin S, Levitz J et al (2015) Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc Natl Acad Sci U S A 112(7):E776–E785. https://doi.org/10.1073/pnas.1416942112

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  59. Levitz J, Habrian C, Bharill S et al (2016) Mechanism of assembly and cooperativity of homomeric and heteromeric metabotropic glutamate receptors. Neuron 92(1):143–159. https://doi.org/10.1016/j.neuron.2016.08.036

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  60. Donthamsetti PC, Winter N, Schonberger M et al (2017) Optical control of dopamine receptors using a photoswitchable tethered inverse agonist. J Am Chem Soc 139(51):18522–18535. https://doi.org/10.1021/jacs.7b07659

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Broichhagen J, Damijonaitis A, Levitz J et al (2015) Orthogonal optical control of a G protein-coupled receptor with a SNAP-tethered photochromic ligand. ACS Cent Sci 1(7):383–393. https://doi.org/10.1021/acscentsci.5b00260

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Levitz J, Broichhagen J, Leippe P et al (2017) Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors. Proc Natl Acad Sci U S A 114(17):E3546–E3554. https://doi.org/10.1073/pnas.1619652114

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  63. Berry MH, Holt A, Levitz J et al (2017) Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor. Nat Commun 8(1):1862. https://doi.org/10.1038/s41467-017-01990-7

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Acosta-Ruiz A, Gutzeit VA, Skelly MJ, Meadows S, Lee J, Parekh P, Orr AG, Liston C, Pleil KE, Broichhagen J, Levitz J (2020) Branched photoswitchable tethered ligands enable ultra-efficient optical control and detection of G protein-coupled receptors in vivo. Neuron 105(3):446–463

    Google Scholar 

  65. Shields BC, Kahuno E, Kim C et al (2017) Deconstructing behavioral neuropharmacology with cellular specificity. Science 356(6333). https://doi.org/10.1126/science.aaj2161

  66. Donthamsetti PC, Broichhagen J, Vyklicky V et al (2019) Genetically targeted optical control of an endogenous G protein-coupled receptor. J Am Chem Soc 141(29):11522–11530. https://doi.org/10.1021/jacs.9b02895

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Farrants H, Gutzeit VA, Acosta-Ruiz A et al (2018) SNAP-tagged nanobodies enable reversible optical control of a G protein-coupled receptor via a remotely tethered photoswitchable ligand. ACS Chem Biol 13(9):2682–2688. https://doi.org/10.1021/acschembio.8b00628

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Repina NA, Rosenbloom A, Mukherjee A et al (2017) At light speed: advances in optogenetic systems for regulating cell signaling and behavior. Annu Rev Chem Biomol Eng 8:13–39. https://doi.org/10.1146/annurev-chembioeng-060816-101254

    CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Goglia AG, Toettcher JE (2019) A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Curr Opin Chem Biol 48:106–113. https://doi.org/10.1016/j.cbpa.2018.11.010

    CAS  CrossRef  PubMed  Google Scholar 

  70. Takenouchi O, Yoshimura H, Ozawa T (2018) Unique roles of beta-arrestin in GPCR trafficking revealed by photoinducible dimerizers. Sci Rep 8(1):677. https://doi.org/10.1038/s41598-017-19130-y

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  71. Liu H, Yu X, Li K et al (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322(5907):1535–1539. https://doi.org/10.1126/science.1163927

    CAS  CrossRef  PubMed  Google Scholar 

  72. Kennedy MJ, Hughes RM, Peteya LA et al (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7(12):973–975. https://doi.org/10.1038/nmeth.1524

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  73. O’Neill PR, Gautam N (2014) Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration. Mol Biol Cell 25(15):2305–2314. https://doi.org/10.1091/mbc.E14-04-0870

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  74. Hannanta-Anan P, Chow BY (2018) Optogenetic inhibition of Galphaq protein signaling reduces calcium oscillation stochasticity. ACS Synth Biol 7(6):1488–1495. https://doi.org/10.1021/acssynbio.8b00065

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  75. De Vries L, Zheng B, Fischer T et al (2000) The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 40:235–271. https://doi.org/10.1146/annurev.pharmtox.40.1.235

    CrossRef  PubMed  Google Scholar 

  76. Yu G, Onodera H, Aono Y et al (2016) Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems. Sci Rep 6:35777. https://doi.org/10.1038/srep35777

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  77. Patel N, Gold MG (2015) The genetically encoded tool set for investigating cAMP: more than the sum of its parts. Front Pharmacol 6:164. https://doi.org/10.3389/fphar.2015.00164

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  78. Iseki M, Matsunaga S, Murakami A et al (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415(6875):1047–1051. https://doi.org/10.1038/4151047a

    CAS  CrossRef  PubMed  Google Scholar 

  79. Stierl M, Stumpf P, Udwari D et al (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286(2):1181–1188. https://doi.org/10.1074/jbc.M110.185496

    CAS  CrossRef  PubMed  Google Scholar 

  80. Ohki M, Sugiyama K, Kawai F et al (2016) Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium. Proc Natl Acad Sci U S A 113(24):6659–6664. https://doi.org/10.1073/pnas.1517520113

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  81. Bellmann D, Richardt A, Freyberger R et al (2010) Optogenetically induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of odor-aversion behavior. Front Behav Neurosci 4:27. https://doi.org/10.3389/fnbeh.2010.00027

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  82. Nagahama T, Suzuki T, Yoshikawa S et al (2007) Functional transplant of photoactivated adenylyl cyclase (PAC) into Aplysia sensory neurons. Neurosci Res 59(1):81–88. https://doi.org/10.1016/j.neures.2007.05.015

    CAS  CrossRef  PubMed  Google Scholar 

  83. Schroder-Lang S, Schwarzel M, Seifert R et al (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4(1):39–42. https://doi.org/10.1038/nmeth975

    CAS  CrossRef  PubMed  Google Scholar 

  84. Weissenberger S, Schultheis C, Liewald JF et al (2011) PACalpha—an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116(4):616–625. https://doi.org/10.1111/j.1471-4159.2010.07148.x

    CAS  CrossRef  PubMed  Google Scholar 

  85. Zhou Z, Tanaka KF, Matsunaga S et al (2016) Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis. Sci Rep 5:19679. https://doi.org/10.1038/srep19679

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  86. Tsvetanova NG, von Zastrow M (2014) Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol 10(12):1061–1065. https://doi.org/10.1038/nchembio.1665

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  87. Leopold AV, Chernov KG, Verkhusha VV (2018) Optogenetically controlled protein kinases for regulation of cellular signaling. Chem Soc Rev 47(7):2454–2484. https://doi.org/10.1039/c7cs00404d

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  88. Wetzker R, Bohmer FD (2003) Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 4(8):651–657. https://doi.org/10.1038/nrm1173

    CAS  CrossRef  PubMed  Google Scholar 

  89. Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6(11):827–837. https://doi.org/10.1038/nrm1743

    CAS  CrossRef  PubMed  Google Scholar 

  90. Toettcher JE, Weiner OD, Lim WA (2013) Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155(6):1422–1434. https://doi.org/10.1016/j.cell.2013.11.004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  91. Levskaya A, Weiner OD, Lim WA et al (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461(7266):997–1001. https://doi.org/10.1038/nature08446

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  92. Zhang K, Duan L, Ong Q et al (2014) Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth. PLoS One 9(3):e92917. https://doi.org/10.1371/journal.pone.0092917

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  93. Zhou XX, Fan LZ, Li P et al (2017) Optical control of cell signaling by single-chain photoswitchable kinases. Science 355(6327):836–842. https://doi.org/10.1126/science.aah3605

    CrossRef  PubMed  PubMed Central  Google Scholar 

  94. Dagliyan O, Tarnawski M, Chu PH et al (2016) Engineering extrinsic disorder to control protein activity in living cells. Science 354(6318):1441–1444. https://doi.org/10.1126/science.aah3404

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  95. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  96. Toettcher JE, Gong D, Lim WA et al (2011) Light-based feedback for controlling intracellular signaling dynamics. Nat Methods 8(10):837–839. https://doi.org/10.1038/nmeth.1700

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  97. Idevall-Hagren O, Dickson EJ, Hille B et al (2012) Optogenetic control of phosphoinositide metabolism. Proc Natl Acad Sci U S A 109(35):E2316–E2323. https://doi.org/10.1073/pnas.1211305109

    CrossRef  PubMed  PubMed Central  Google Scholar 

  98. Katsura Y, Kubota H, Kunida K et al (2015) An optogenetic system for interrogating the temporal dynamics of Akt. Sci Rep 5:14589. https://doi.org/10.1038/srep14589

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  99. Xu Y, Nan D, Fan J et al (2016) Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action. J Cell Sci 129(10):2085–2095. https://doi.org/10.1242/jcs.174805

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  100. Ong Q, Guo S, Duan L et al (2016) The timing of Raf/ERK and AKT activation in protecting PC12 cells against oxidative stress. PLoS One 11(4):e0153487. https://doi.org/10.1371/journal.pone.0153487

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  101. Wang W, Qiao Y, Li Z (2018) New insights into modes of GPCR activation. Trends Pharmacol Sci 39(4):367–386. https://doi.org/10.1016/j.tips.2018.01.001

    CAS  CrossRef  PubMed  Google Scholar 

  102. Grusch M, Schelch K, Riedler R et al (2014) Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J 33(15):1713–1726. https://doi.org/10.15252/embj.201387695

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  103. Chang KY, Woo D, Jung H et al (2014) Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling. Nat Commun 5:4057. https://doi.org/10.1038/ncomms5057

    CAS  CrossRef  PubMed  Google Scholar 

  104. Reichhart E, Ingles-Prieto A, Tichy AM et al (2016) A phytochrome sensory domain permits receptor activation by red light. Angew Chem Int Ed Engl 55(21):6339–6342. https://doi.org/10.1002/anie.201601736

    CAS  CrossRef  PubMed  Google Scholar 

  105. Kainrath S, Stadler M, Reichhart E et al (2017) Green-light-induced inactivation of receptor signaling using cobalamin-binding domains. Angew Chem Int Ed Engl 56(16):4608–4611. https://doi.org/10.1002/anie.201611998

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  106. Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301(5639):1541–1544. https://doi.org/10.1126/science.1086810

    CAS  CrossRef  PubMed  Google Scholar 

  107. Dagliyan O, Hahn KM (2019) Controlling protein conformation with light. Curr Opin Struct Biol 57:17–22. https://doi.org/10.1016/j.sbi.2019.01.012

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  108. Murakoshi H, Shin ME, Parra-Bueno P et al (2017) Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94(1):37–47.e35. https://doi.org/10.1016/j.neuron.2017.02.036

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  109. Liu XY, Mao LM, Zhang GC et al (2009) Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron 61(3):425–438. https://doi.org/10.1016/j.neuron.2008.12.015

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  110. Guetg N, Abdel Aziz S, Holbro N et al (2010) NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proc Natl Acad Sci U S A 107(31):13924–13929. https://doi.org/10.1073/pnas.1000909107

    CrossRef  PubMed  PubMed Central  Google Scholar 

  111. Chen YJ, Oldfield S, Butcher AJ et al (2013) Identification of phosphorylation sites in the COOH-terminal tail of the mu-opioid receptor. J Neurochem 124(2):189–199. https://doi.org/10.1111/jnc.12071

    CAS  CrossRef  PubMed  Google Scholar 

  112. Jin DZ, Guo ML, Xue B et al (2013) Phosphorylation and feedback regulation of metabotropic glutamate receptor 1 by calcium/calmodulin-dependent protein kinase II. J Neurosci 33(8):3402–3412. https://doi.org/10.1523/JNEUROSCI.3192-12.2013

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  113. Mockett BG, Guevremont D, Wutte M et al (2011) Calcium/calmodulin-dependent protein kinase II mediates group I metabotropic glutamate receptor-dependent protein synthesis and long-term depression in rat hippocampus. J Neurosci 31(20):7380–7391. https://doi.org/10.1523/JNEUROSCI.6656-10.2011

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  114. Ishida A, Shigeri Y, Tatsu Y et al (1998) Critical amino acid residues of AIP, a highly specific inhibitory peptide of calmodulin-dependent protein kinase II. FEBS Lett 427(1):115–118. https://doi.org/10.1016/s0014-5793(98)00405-0

    CAS  CrossRef  PubMed  Google Scholar 

  115. Yi JJ, Wang H, Vilela M et al (2014) Manipulation of endogenous kinase activity in living cells using photoswitchable inhibitory peptides. ACS Synth Biol 3(11):788–795. https://doi.org/10.1021/sb5001356

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  116. Melero-Fernandez de Mera RM, Li LL, Popinigis A et al (2017) A simple optogenetic MAPK inhibitor design reveals resonance between transcription-regulating circuitry and temporally-encoded inputs. Nat Commun 8:15017. https://doi.org/10.1038/ncomms15017

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  117. Tsai YH, Essig S, James JR et al (2015) Selective, rapid and optically switchable regulation of protein function in live mammalian cells. Nat Chem 7(7):554–561. https://doi.org/10.1038/nchem.2253

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  118. Yazawa M, Sadaghiani AM, Hsueh B et al (2009) Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27(10):941–945. https://doi.org/10.1038/nbt.1569

    CAS  CrossRef  PubMed  Google Scholar 

  119. Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9(3):266–269. https://doi.org/10.1038/nmeth.1892

    CAS  CrossRef  PubMed  Google Scholar 

  120. Motta-Mena LB, Reade A, Mallory MJ et al (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol 10(3):196–202. https://doi.org/10.1038/nchembio.1430

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  121. Bugaj LJ, Choksi AT, Mesuda CK et al (2013) Optogenetic protein clustering and signaling activation in mammalian cells. Nat Methods 10(3):249–252. https://doi.org/10.1038/nmeth.2360

    CAS  CrossRef  PubMed  Google Scholar 

  122. Taslimi A, Vrana JD, Chen D et al (2014) An optimized optogenetic clustering tool for probing protein interaction and function. Nat Commun 5:4925. https://doi.org/10.1038/ncomms5925

    CAS  CrossRef  PubMed  Google Scholar 

  123. Shin Y, Berry J, Pannucci N et al (2017) Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168(1–2):159–171.e114. https://doi.org/10.1016/j.cell.2016.11.054

    CAS  CrossRef  PubMed  Google Scholar 

  124. van Bergeijk P, Adrian M, Hoogenraad CC et al (2015) Optogenetic control of organelle transport and positioning. Nature 518(7537):111–114. https://doi.org/10.1038/nature14128

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  125. Niopek D, Benzinger D, Roensch J et al (2014) Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat Commun 5:4404. https://doi.org/10.1038/ncomms5404

    CAS  CrossRef  PubMed  Google Scholar 

  126. Renicke C, Schuster D, Usherenko S et al (2013) A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem Biol 20(4):619–626. https://doi.org/10.1016/j.chembiol.2013.03.005

    CAS  CrossRef  PubMed  Google Scholar 

  127. Bonger KM, Rakhit R, Payumo AY et al (2014) General method for regulating protein stability with light. ACS Chem Biol 9(1):111–115. https://doi.org/10.1021/cb400755b

    CAS  CrossRef  PubMed  Google Scholar 

  128. Chen D, Gibson ES, Kennedy MJ (2013) A light-triggered protein secretion system. J Cell Biol 201(4):631–640. https://doi.org/10.1083/jcb.201210119

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  129. Glantz ST, Berlew EE, Jaber Z et al (2018) Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids. Proc Natl Acad Sci U S A 115(33):E7720–E7727. https://doi.org/10.1073/pnas.1802832115

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  130. Hull K, Morstein J, Trauner D (2018) In vivo photopharmacology. Chem Rev 118(21):10710–10747. https://doi.org/10.1021/acs.chemrev.8b00037

    CAS  CrossRef  PubMed  Google Scholar 

  131. Paoletti P, Ellis-Davies GCR, Mourot A (2019) Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 20:514–532. https://doi.org/10.1038/s41583-019-0197-2

  132. Banghart M, Borges K, Isacoff E et al (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386. https://doi.org/10.1038/nn1356

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  133. Volgraf M, Gorostiza P, Numano R et al (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2(1):47–52. https://doi.org/10.1038/nchembio756

    CAS  CrossRef  PubMed  Google Scholar 

  134. Sandoz G, Levitz J, Kramer RH et al (2012) Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABA(B) signaling. Neuron 74(6):1005–1014. https://doi.org/10.1016/j.neuron.2012.04.026

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  135. Barber DM, Schonberger M, Burgstaller J et al (2016) Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO). Chem Sci 7(3):2347–2352. https://doi.org/10.1039/C5SC04084A

    CAS  CrossRef  PubMed  Google Scholar 

  136. Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 64(2):299–336. https://doi.org/10.1124/pr.110.004309

    CAS  CrossRef  PubMed  Google Scholar 

  137. Miyawaki A (2011) Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu Rev Biochem 80:357–373. https://doi.org/10.1146/annurev-biochem-072909-094736

    CAS  CrossRef  PubMed  Google Scholar 

  138. Vilardaga JP, Bunemann M, Krasel C et al (2003) Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol 21(7):807–812. https://doi.org/10.1038/nbt838

    CAS  CrossRef  PubMed  Google Scholar 

  139. Vilardaga JP, Steinmeyer R, Harms GS et al (2005) Molecular basis of inverse agonism in a G protein-coupled receptor. Nat Chem Biol 1(1):25–28. https://doi.org/10.1038/nchembio705

    CAS  CrossRef  PubMed  Google Scholar 

  140. Xue L, Karpenko IA, Hiblot J et al (2015) Imaging and manipulating proteins in live cells through covalent labeling. Nat Chem Biol 11(12):917–923. https://doi.org/10.1038/nchembio.1959

    CAS  CrossRef  PubMed  Google Scholar 

  141. Doumazane E, Scholler P, Zwier JM et al (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 25(1):66–77. https://doi.org/10.1096/fj.10-163147

    CAS  CrossRef  PubMed  Google Scholar 

  142. Doumazane E, Scholler P, Fabre L et al (2013) Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. Proc Natl Acad Sci U S A 110(15):E1416–E1425. https://doi.org/10.1073/pnas.1215615110

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  143. Vafabakhsh R, Levitz J, Isacoff EY (2015) Conformational dynamics of a class C G-protein-coupled receptor. Nature 524(7566):497–501. https://doi.org/10.1038/nature14679

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  144. Lecat-Guillet N, Monnier C, Rovira X et al (2017) FRET-based sensors unravel activation and allosteric modulation of the GABAB receptor. Cell Chem Biol 24(3):360–370. https://doi.org/10.1016/j.chembiol.2017.02.011

    CAS  CrossRef  PubMed  Google Scholar 

  145. Gutzeit VA, Thibado J, Stor DS et al (2019) Conformational dynamics between transmembrane domains and allosteric modulation of a metabotropic glutamate receptor. elife 8. https://doi.org/10.7554/eLife.45116

  146. Tian H, Furstenberg A, Huber T (2017) Labeling and single-molecule methods to monitor G protein-coupled receptor dynamics. Chem Rev 117(1):186–245. https://doi.org/10.1021/acs.chemrev.6b00084

    CAS  CrossRef  PubMed  Google Scholar 

  147. Hein P, Frank M, Hoffmann C et al (2005) Dynamics of receptor/G protein coupling in living cells. EMBO J 24(23):4106–4114. https://doi.org/10.1038/sj.emboj.7600870

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  148. Hein P, Rochais F, Hoffmann C et al (2006) Gs activation is time-limiting in initiating receptor-mediated signaling. J Biol Chem 281(44):33345–33351. https://doi.org/10.1074/jbc.M606713200

    CAS  CrossRef  PubMed  Google Scholar 

  149. Nobles M, Benians A, Tinker A (2005) Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci U S A 102(51):18706–18711. https://doi.org/10.1073/pnas.0504778102

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  150. Gales C, Rebois RV, Hogue M et al (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2(3):177–184. https://doi.org/10.1038/nmeth743

    CAS  CrossRef  PubMed  Google Scholar 

  151. Bunemann M, Frank M, Lohse MJ (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci U S A 100(26):16077–16082. https://doi.org/10.1073/pnas.2536719100

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  152. Nuber S, Zabel U, Lorenz K et al (2016) beta-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531(7596):661–664. https://doi.org/10.1038/nature17198

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  153. Lee MH, Appleton KM, Strungs EG et al (2016) The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions. Nature 531(7596):665–668. https://doi.org/10.1038/nature17154

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  154. Albizu L, Cottet M, Kralikova M et al (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6(8):587–594. https://doi.org/10.1038/nchembio.396

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  155. Thomsen ARB, Plouffe B, Cahill TJ 3rd et al (2016) GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell 166(4):907–919. https://doi.org/10.1016/j.cell.2016.07.004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  156. Sungkaworn T, Jobin ML, Burnecki K et al (2017) Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 550(7677):543–547. https://doi.org/10.1038/nature24264

    CAS  CrossRef  PubMed  Google Scholar 

  157. Manglik A, Kobilka BK, Steyaert J (2017) Nanobodies to study G protein-coupled receptor structure and function. Annu Rev Pharmacol Toxicol 57:19–37. https://doi.org/10.1146/annurev-pharmtox-010716-104710

    CAS  CrossRef  PubMed  Google Scholar 

  158. Heukers R, De Groof TWM, Smit MJ (2019) Nanobodies detecting and modulating GPCRs outside in and inside out. Curr Opin Cell Biol 57:115–122. https://doi.org/10.1016/j.ceb.2019.01.003

    CAS  CrossRef  PubMed  Google Scholar 

  159. Rasmussen SG, Choi HJ, Fung JJ et al (2011) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329):175–180. https://doi.org/10.1038/nature09648

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  160. Scholler P, Nevoltris D, de Bundel D et al (2017) Allosteric nanobodies uncover a role of hippocampal mGlu2 receptor homodimers in contextual fear consolidation. Nat Commun 8(1):1967. https://doi.org/10.1038/s41467-017-01489-1

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  161. Che T, Majumdar S, Zaidi SA et al (2018) Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 172(1–2):55–67.e15. https://doi.org/10.1016/j.cell.2017.12.011

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  162. Westfield GH, Rasmussen SG, Su M et al (2011) Structural flexibility of the G alpha s alpha-helical domain in the beta2-adrenoceptor Gs complex. Proc Natl Acad Sci U S A 108(38):16086–16091. https://doi.org/10.1073/pnas.1113645108

    CrossRef  PubMed  PubMed Central  Google Scholar 

  163. Gulati S, Jin H, Masuho I et al (2018) Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nat Commun 9(1):1996. https://doi.org/10.1038/s41467-018-04432-0

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  164. Cahill TJ 3rd, Thomsen AR, Tarrasch JT et al (2017) Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc Natl Acad Sci U S A 114(10):2562–2567. https://doi.org/10.1073/pnas.1701529114

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  165. Irannejad R, Tomshine JC, Tomshine JR et al (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495(7442):534–538. https://doi.org/10.1038/nature12000

    CAS  CrossRef  PubMed  Google Scholar 

  166. McMahon C, Baier AS, Pascolutti R et al (2018) Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 25(3):289–296. https://doi.org/10.1038/s41594-018-0028-6

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  167. Barnea G, Strapps W, Herrada G et al (2008) The genetic design of signaling cascades to record receptor activation. Proc Natl Acad Sci U S A 105(1):64–69. https://doi.org/10.1073/pnas.0710487105

    CrossRef  PubMed  Google Scholar 

  168. Kroeze WK, Sassano MF, Huang XP et al (2015) PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat Struct Mol Biol 22(5):362–369. https://doi.org/10.1038/nsmb.3014

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  169. Lee D, Creed M, Jung K et al (2017) Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. Nat Methods 14(5):495–503. https://doi.org/10.1038/nmeth.4234

    CAS  CrossRef  PubMed  Google Scholar 

  170. Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887. https://doi.org/10.1038/42264

    CAS  CrossRef  PubMed  Google Scholar 

  171. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141. https://doi.org/10.1038/84397

    CAS  CrossRef  PubMed  Google Scholar 

  172. Greenwald EC, Mehta S, Zhang J (2018) Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem Rev 118(24):11707–11794. https://doi.org/10.1021/acs.chemrev.8b00333

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  173. Paramonov VM, Mamaeva V, Sahlgren C et al (2015) Genetically-encoded tools for cAMP probing and modulation in living systems. Front Pharmacol 6:196. https://doi.org/10.3389/fphar.2015.00196

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  174. Hackley CR, Mazzoni EO, Blau J (2018) cAMPr: a single-wavelength fluorescent sensor for cyclic AMP. Sci Signal 11(520). https://doi.org/10.1126/scisignal.aah3738

  175. Platisa J, Pieribone VA (2018) Genetically encoded fluorescent voltage indicators: are we there yet? Curr Opin Neurobiol 50:146–153. https://doi.org/10.1016/j.conb.2018.02.006

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  176. Patriarchi T, Cho JR, Merten K et al (2018) Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360(6396). https://doi.org/10.1126/science.aat4422

  177. Mohebi A, Pettibone JR, Hamid AA et al (2019) Dissociable dopamine dynamics for learning and motivation. Nature 570(7759):65–70. https://doi.org/10.1038/s41586-019-1235-y

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  178. Sun F, Zeng J, Jing M et al (2018) A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174(2):481–496.e419. https://doi.org/10.1016/j.cell.2018.06.042

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  179. Feng J, Zhang C, Lischinsky JE et al (2019) A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102(4):745–761.e748. https://doi.org/10.1016/j.neuron.2019.02.037

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  180. Marvin JS, Borghuis BG, Tian L et al (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10(2):162–170. https://doi.org/10.1038/nmeth.2333

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  181. Marvin JS, Scholl B, Wilson DE et al (2018) Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat Methods 15(11):936–939. https://doi.org/10.1038/s41592-018-0171-3

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  182. Marvin JS, Shimoda Y, Magloire V et al (2019) A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods 16(8):763–770. https://doi.org/10.1038/s41592-019-0471-2

    CAS  CrossRef  PubMed  Google Scholar 

  183. McMahon SM, Jackson MB (2018) An inconvenient truth: calcium sensors are calcium buffers. Trends Neurosci 41(12):880–884. https://doi.org/10.1016/j.tins.2018.09.005

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  184. Takao K, Okamoto K, Nakagawa T et al (2005) Visualization of synaptic Ca2+ /calmodulin-dependent protein kinase II activity in living neurons. J Neurosci 25(12):3107–3112. https://doi.org/10.1523/JNEUROSCI.0085-05.2005

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  185. Kwok S, Lee C, Sanchez SA et al (2008) Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity. Biochem Biophys Res Commun 369(2):519–525. https://doi.org/10.1016/j.bbrc.2008.02.070

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  186. Lam AJ, St-Pierre F, Gong Y et al (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9(10):1005–1012. https://doi.org/10.1038/nmeth.2171

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  187. Lee SJ, Escobedo-Lozoya Y, Szatmari EM et al (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458(7236):299–304. https://doi.org/10.1038/nature07842

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  188. Chang JY, Parra-Bueno P, Laviv T et al (2017) CaMKII autophosphorylation is necessary for optimal integration of Ca(2+) signals during LTP induction, but not maintenance. Neuron 94(4):800–808.e804. https://doi.org/10.1016/j.neuron.2017.04.041

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  189. Chao LH, Stratton MM, Lee IH et al (2011) A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin- dependent kinase II holoenzyme. Cell 146(5):732–745. https://doi.org/10.1016/j.cell.2011.07.038

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  190. Stratton M, Lee IH, Bhattacharyya M et al (2014) Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. elife 3:e01610. https://doi.org/10.7554/eLife.01610

    CrossRef  PubMed  PubMed Central  Google Scholar 

  191. Allen MD, Zhang J (2006) Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem Biophys Res Commun 348(2):716–721. https://doi.org/10.1016/j.bbrc.2006.07.136

    CAS  CrossRef  PubMed  Google Scholar 

  192. Chen Y, Saulnier JL, Yellen G et al (2014) A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Front Pharmacol 5:56. https://doi.org/10.3389/fphar.2014.00056

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  193. Barbagallo F, Xu B, Reddy GR et al (2016) Genetically encoded biosensors reveal PKA hyperphosphorylation on the myofilaments in rabbit heart failure. Circ Res 119(8):931–943. https://doi.org/10.1161/CIRCRESAHA.116.308964

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  194. Demeautis C, Sipieter F, Roul J et al (2017) Multiplexing PKA and ERK1&2 kinases FRET biosensors in living cells using single excitation wavelength dual colour FLIM. Sci Rep 7:41026. https://doi.org/10.1038/srep41026

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  195. Tang S, Yasuda R (2017) Imaging ERK and PKA activation in single dendritic spines during structural plasticity. Neuron 93(6):1315–1324.e1313. https://doi.org/10.1016/j.neuron.2017.02.032

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  196. Mo GC, Ross B, Hertel F et al (2017) Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat Methods 14(4):427–434. https://doi.org/10.1038/nmeth.4221

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  197. Chen Y, Granger AJ, Tran T et al (2017) Endogenous Galphaq-coupled neuromodulator receptors activate protein kinase A. Neuron 96(5):1070–1083.e1075. https://doi.org/10.1016/j.neuron.2017.10.023

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  198. Harvey CD, Ehrhardt AG, Cellurale C et al (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A 105(49):19264–19269. https://doi.org/10.1073/pnas.0804598105

    CrossRef  PubMed  PubMed Central  Google Scholar 

  199. Violin JD, Newton AC (2003) Pathway illuminated: visualizing protein kinase C signaling. IUBMB Life 55(12):653–660. https://doi.org/10.1080/152165401310001642216

    CAS  CrossRef  PubMed  Google Scholar 

  200. Wang Y, Botvinick EL, Zhao Y et al (2005) Visualizing the mechanical activation of Src. Nature 434(7036):1040–1045. https://doi.org/10.1038/nature03469

    CAS  CrossRef  PubMed  Google Scholar 

  201. Ouyang M, Sun J, Chien S et al (2008) Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc Natl Acad Sci U S A 105(38):14353–14358. https://doi.org/10.1073/pnas.0807537105

    CrossRef  PubMed  PubMed Central  Google Scholar 

  202. Gao X, Zhang J (2008) Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol Biol Cell 19(10):4366–4373. https://doi.org/10.1091/mbc.E08-05-0449

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  203. Ardestani G, West MC, Maresca TJ et al (2019) FRET-based sensor for CaMKII activity (FRESCA): a useful tool for assessing CaMKII activity in response to Ca(2+) oscillations in live cells. J Biol Chem 294(31):11876–11891. https://doi.org/10.1074/jbc.RA119.009235

  204. Mehta S, Zhang Y, Roth RH et al (2018) Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nat Cell Biol 20(10):1215–1225. https://doi.org/10.1038/s41556-018-0200-6

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  205. Colgan LA, Hu M, Misler JA et al (2018) PKCalpha integrates spatiotemporally distinct Ca(2+) and autocrine BDNF signaling to facilitate synaptic plasticity. Nat Neurosci 21(8):1027–1037. https://doi.org/10.1038/s41593-018-0184-3

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  206. Halls ML, Canals M (2018) Genetically encoded FRET biosensors to illuminate compartmentalised GPCR signalling. Trends Pharmacol Sci 39(2):148–157. https://doi.org/10.1016/j.tips.2017.09.005

    CAS  CrossRef  PubMed  Google Scholar 

  207. de Juan-Sanz J, Holt GT, Schreiter ER et al (2017) Axonal endoplasmic reticulum Ca(2+) content controls release probability in CNS nerve terminals. Neuron 93(4):867–881.e866. https://doi.org/10.1016/j.neuron.2017.01.010

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  208. Vincent K, Cornea VM, Jong YI et al (2016) Intracellular mGluR5 plays a critical role in neuropathic pain. Nat Commun 7:10604. https://doi.org/10.1038/ncomms10604

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  209. Halls ML, Yeatman HR, Nowell CJ et al (2016) Plasma membrane localization of the mu-opioid receptor controls spatiotemporal signaling. Sci Signal 9(414):ra16. https://doi.org/10.1126/scisignal.aac9177

    CAS  CrossRef  PubMed  Google Scholar 

  210. Cheng Y (2018) Single-particle cryo-EM—how did it get here and where will it go. Science 361(6405):876–880. https://doi.org/10.1126/science.aat4346

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  211. Nishiyama J, Mikuni T, Yasuda R (2017) Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain. Neuron 96(4):755–768.e755. https://doi.org/10.1016/j.neuron.2017.10.004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  212. Gao Y, Hisey E, Bradshaw TWA et al (2019) Plug-and-play protein modification using homology-independent universal genome engineering. Neuron 103(4):P583–597.E8. https://doi.org/10.1016/j.neuron.2019.05.047

  213. Yang W, Yuste R (2017) In vivo imaging of neural activity. Nat Methods 14(4):349–359. https://doi.org/10.1038/nmeth.4230

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  214. Alon S, Huynh GH, Boyden ES (2019) Expansion microscopy: enabling single cell analysis in intact biological systems. FEBS J 286(8):1482–1494. https://doi.org/10.1111/febs.14597

    CAS  CrossRef  PubMed  Google Scholar 

  215. Han S, Li J, Ting AY (2018) Proximity labeling: spatially resolved proteomic mapping for neurobiology. Curr Opin Neurobiol 50:17–23. https://doi.org/10.1016/j.conb.2017.10.015

    CAS  CrossRef  PubMed  Google Scholar 

  216. Lobingier BT, Huttenhain R, Eichel K et al (2017) An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169(2):350–360.e312. https://doi.org/10.1016/j.cell.2017.03.022

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  217. Paek J, Kalocsay M, Staus DP et al (2017) Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169(2):338–349.e311. https://doi.org/10.1016/j.cell.2017.03.028

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  218. von Diezmann A, Shechtman Y, Moerner WE (2017) Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem Rev 117(11):7244–7275. https://doi.org/10.1021/acs.chemrev.6b00629

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

The authors thank David Simon and Margaret Stratton for helpful feedback. N.A. is supported by an NSF Graduate Research Fellowship and J.L. is supported by an R35 grant (1 R35 GM124731) from NIGMS and the Rohr Family Research Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Levitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Abreu, N., Levitz, J. (2020). Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0755-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0755-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols