Skip to main content

Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp

  • 1097 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2173)

Abstract

Optogenetics has become a key method to interrogate the function of neural populations and circuits in the brain. This technique combines the targeted expression of light-activated proteins with subsequent manipulation of neural activity by light. Opsins such as Channelrhodopsin-2 (ChR2), which is a light-gated cation-channel, can be fused to or coexpressed with fluorescent proteins to allow for visualization and concurrent activation of neurons and their axonal projections. Via stereotaxic delivery of viral vectors, ChR2 can be constitutively or conditionally expressed in specific neurons in defined brain regions. Subsequently, identified axonal projections can be studied functionally ex vivo in combination with patch-clamp recordings in brain slices. This optogenetic mapping of neural circuitry has enabled the identification and characterization of novel synaptic connections and the detailed investigation of known anatomical connections previously not amenable with electrical stimulation techniques. Here, we describe a protocol for investigating functional properties of local and long-range connectivity in the brain using blue-light activated ChR2 variants and whole-cell patch-clamp recordings in acute brain slices.

Key words

  • Channelrhodopsin-2
  • Optogenetics
  • Neural circuits
  • Synaptic connectivity
  • Brain slices
  • Ex vivo
  • Whole-cell patch-clamp

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0755-8_1
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0755-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945. https://doi.org/10.1073/pnas.1936192100

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. https://doi.org/10.1038/nn1525

    CAS  CrossRef  PubMed  Google Scholar 

  3. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266. https://doi.org/10.1038/nrn3171

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71(1):9–34. https://doi.org/10.1016/j.neuron.2011.06.004

    CAS  CrossRef  PubMed  Google Scholar 

  5. Adamantidis A, Arber S, Bains JS, Bamberg E, Bonci A, Buzsaki G, Cardin JA, Costa RM, Dan Y, Goda Y, Graybiel AM, Hausser M, Hegemann P, Huguenard JR, Insel TR, Janak PH, Johnston D, Josselyn SA, Koch C, Kreitzer AC, Luscher C, Malenka RC, Miesenbock G, Nagel G, Roska B, Schnitzer MJ, Shenoy KV, Soltesz I, Sternson SM, Tsien RW, Tsien RY, Turrigiano GG, Tye KM, Wilson RI (2015) Optogenetics: 10 years after ChR2 in neurons—views from the community. Nat Neurosci 18(9):1202–1212. https://doi.org/10.1038/nn.4106

    CAS  CrossRef  PubMed  Google Scholar 

  6. Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10(5):663–668. https://doi.org/10.1038/nn1891

    CAS  CrossRef  PubMed  Google Scholar 

  7. Lim DH, Ledue J, Mohajerani MH, Vanni MP, Murphy TH (2013) Optogenetic approaches for functional mouse brain mapping. Front Neurosci 7:54–54. https://doi.org/10.3389/fnins.2013.00054

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Bosch D, Asede D, Ehrlich I (2016) Ex vivo optogenetic dissection of fear circuits in brain slices. J Visual Exp 110:e53628. https://doi.org/10.3791/53628

    CAS  CrossRef  Google Scholar 

  9. Davidson BL, Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4(5):353–364. https://doi.org/10.1038/nrn1104

    CAS  CrossRef  PubMed  Google Scholar 

  10. Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang CC, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92(2):372–382. https://doi.org/10.1016/j.neuron.2016.09.021

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Zingg B, Chou XL, Zhang ZG, Mesik L, Liang F, Tao HW, Zhang LI (2017) AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93(1):33–47. https://doi.org/10.1016/j.neuron.2016.11.045

    CAS  CrossRef  PubMed  Google Scholar 

  12. Miyashita T, Shao YR, Chung J, Pourzia O, Feldman DE (2013) Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front Neural Circ 7:8. https://doi.org/10.3389/fncir.2013.00008

    CAS  CrossRef  Google Scholar 

  13. Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8(9):e76310. https://doi.org/10.1371/journal.pone.0076310

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Holehonnur R, Luong JA, Chaturvedi D, Ho A, Lella SK, Hosek MP, Ploski JE (2014) Adeno-associated viral serotypes produce differing titers and differentially transduce neurons within the rat basal and lateral amygdala. BMC Neurosci 15:28. https://doi.org/10.1186/1471-2202-15-28

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. McFarland NR, Lee JS, Hyman BT, McLean PJ (2009) Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. J Neurochem 109(3):838–845. https://doi.org/10.1111/j.1471-4159.2009.06010.x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Cetin A, Komai S, Eliava M, Seeburg PH, Osten P (2006) Stereotaxic gene delivery in the rodent brain. Nat Protoc 1(6):3166–3173. https://doi.org/10.1038/nprot.2006.450

    CAS  CrossRef  PubMed  Google Scholar 

  17. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. https://doi.org/10.1038/nn.2467

    CAS  CrossRef  PubMed  Google Scholar 

  18. Huang ZJ, Zeng H (2013) Genetic approaches to neural circuits in the mouse. Annu Rev Neurosci 36:183–215. https://doi.org/10.1146/annurev-neuro-062012-170307

    CAS  CrossRef  PubMed  Google Scholar 

  19. Daigle TL, Madisen L, Hage TA, Valley MT, Knoblich U, Larsen RS, Takeno MM, Huang L, Gu H, Larsen R, Mills M, Bosma-Moody A, Siverts LA, Walker M, Graybuck LT, Yao Z, Fong O, Nguyen TN, Garren E, Lenz GH, Chavarha M, Pendergraft J, Harrington J, Hirokawa KE, Harris JA, Nicovich PR, McGraw MJ, Ollerenshaw DR, Smith KA, Baker CA, Ting JT, Sunkin SM, Lecoq J, Lin MZ, Boyden ES, Murphy GJ, da Costa NM, Waters J, Li L, Tasic B, Zeng H (2018) A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174(2):465–480.e422. https://doi.org/10.1016/j.cell.2018.06.035

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Hübner C, Bosch D, Gall A, Luthi A, Ehrlich I (2014) Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory. Front Behav Neurosci 8:64. https://doi.org/10.3389/fnbeh.2014.00064

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Zhang YP, Oertner TG (2007) Optical induction of synaptic plasticity using a light-sensitive channel. Nat Methods 4(2):139–141. https://doi.org/10.1038/nmeth988

    CAS  CrossRef  PubMed  Google Scholar 

  22. Jackman SL, Beneduce BM, Drew IR, Regehr WG (2014) Achieving high-frequency optical control of synaptic transmission. J Neurosci 34(22):7704–7714. https://doi.org/10.1523/JNEUROSCI.4694-13.2014

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Asede D, Bosch D, Luthi A, Ferraguti F, Ehrlich I (2015) Sensory inputs to intercalated cells provide fear-learning modulated inhibition to the basolateral amygdala. Neuron 86(2):541–554. https://doi.org/10.1016/j.neuron.2015.03.008

    CAS  CrossRef  PubMed  Google Scholar 

  24. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76(4):790–803. https://doi.org/10.1016/j.neuron.2012.09.040

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Chu HY, Ito W, Li J, Morozov A (2012) Target-specific suppression of GABA release from parvalbumin interneurons in the basolateral amygdala by dopamine. J Neurosci 32(42):14815–14820. https://doi.org/10.1523/JNEUROSCI.2997-12.2012

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Zussy C, Gomez-Santacana X, Rovira X, De Bundel D, Ferrazzo S, Bosch D, Asede D, Malhaire F, Acher F, Giraldo J, Valjent E, Ehrlich I, Ferraguti F, Pin JP, Llebaria A, Goudet C (2018) Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4. Mol Psychiatry 23(3):509–520. https://doi.org/10.1038/mp.2016.223

    CAS  CrossRef  PubMed  Google Scholar 

  27. Kohl MM, Shipton OA, Deacon RM, Rawlins JN, Deisseroth K, Paulsen O (2011) Hemisphere-specific optogenetic stimulation reveals left-right asymmetry of hippocampal plasticity. Nat Neurosci 14(11):1413–1415. https://doi.org/10.1038/nn.2915

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Morozov A, Sukato D, Ito W (2011) Selective suppression of plasticity in amygdala inputs from temporal association cortex by the external capsule. J Neurosci 31(1):339–345. https://doi.org/10.1523/JNEUROSCI.5537-10.2011

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457(7233):1142–1145. https://doi.org/10.1038/nature07709

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM (2013) BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79(4):658–664. https://doi.org/10.1016/j.neuron.2013.06.016

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Cho JH, Deisseroth K, Bolshakov VY (2013) Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80(6):1491–1507. https://doi.org/10.1016/j.neuron.2013.09.025

    CAS  CrossRef  PubMed  Google Scholar 

  32. Wu ZZ, Li DP, Chen SR, Pan HL (2009) Aminopyridines potentiate synaptic and neuromuscular transmission by targeting the voltage-activated calcium channel beta subunit. J Biol Chem 284(52):36453–36461. https://doi.org/10.1074/jbc.M109.075523

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11(6):631–633. https://doi.org/10.1038/nn.2120

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141(1):154–165. https://doi.org/10.1016/j.cell.2010.02.037

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J, Deisseroth K, Hegemann P (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 287(38):31804–31812. https://doi.org/10.1074/jbc.M112.391185

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346. https://doi.org/10.1038/nmeth.2836

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Erbguth K, Prigge M, Schneider F, Hegemann P, Gottschalk A (2012) Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS One 7(10):e46827. https://doi.org/10.1371/journal.pone.0046827

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171–178. https://doi.org/10.1038/nature10360

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Baker CA, Elyada YM, Parra A, Bolton MM (2016) Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin. eLife 5:e14193. https://doi.org/10.7554/eLife.14193

    CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Shemesh OA, Tanese D, Zampini V, Linghu C, Piatkevich K, Ronzitti E, Papagiakoumou E, Boyden ES, Emiliani V (2017) Temporally precise single-cell-resolution optogenetics. Nat Neurosci 20(12):1796–1806. https://doi.org/10.1038/s41593-017-0018-8

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Mardinly AR, Oldenburg IA, Pégard NC, Sridharan S, Lyall EH, Chesnov K, Brohawn SG, Waller L, Adesnik H (2018) Precise multimodal optical control of neural ensemble activity. Nat Neurosci 21(6):881–893. https://doi.org/10.1038/s41593-018-0139-8

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Ting JT, Daigle TL, Chen Q, Feng G (2014) Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol 1183:221–242. https://doi.org/10.1007/978-1-4939-1096-0_14

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B (2013) Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci 16(3):332–339. https://doi.org/10.1038/nn.3322

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R, Gunaydin LA, Hyun M, Fenno LE, Gradinaru V, Yizhar O, Deisseroth K (2011) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159. https://doi.org/10.1038/nmeth.1808

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, Oertner TG (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 108(18):7595–7600. https://doi.org/10.1073/pnas.1017210108

    CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Rothman JS, Silver RA (2018) NeuroMatic: an integrated open-source software toolkit for acquisition, analysis and simulation of electrophysiological data. Front Neuroinform 12:14. https://doi.org/10.3389/fninf.2018.00014

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Ehrlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Aksoy-Aksel, A., Genty, J., Zeller, M., Ehrlich, I. (2020). Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp . In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0755-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0755-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols