Skip to main content

Optogenetics and CRISPR: A New Relationship Built to Last

Part of the Methods in Molecular Biology book series (MIMB,volume 2173)

Abstract

Since the breakthrough discoveries that CRISPR-Cas9 nucleases can be easily programmed and employed to induce targeted double-strand breaks in mammalian cells, the gene editing field has grown exponentially. Today, CRISPR technologies based on engineered class II CRISPR effectors facilitate targeted modification of genes and RNA transcripts. Moreover, catalytically impaired CRISPR-Cas variants can be employed as programmable DNA binding domains and used to recruit effector proteins, such as transcriptional regulators, epigenetic modifiers or base-modifying enzymes, to selected genomic loci. The juxtaposition of CRISPR and optogenetics enables spatiotemporally confined and highly dynamic genome perturbations in living cells and animals and holds unprecedented potential for biology and biomedicine.

Here, we provide an overview of the state-of-the-art methods for light-control of CRISPR effectors. We will detail the plethora of exciting applications enabled by these systems, including spatially confined genome editing, timed activation of endogenous genes, as well as remote control of chromatin–chromatin interactions. Finally, we will discuss limitations of current optogenetic CRISPR tools and point out routes for future innovation in this emerging field.

Key words

  • CRISPR-Cas
  • Optogenetics
  • Photoreceptor
  • Genome editing
  • anti-CRISPR

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0755-8_18
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0755-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Hu JH, Miller SM, Geurts MH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556(7699):57–63. https://doi.org/10.1038/nature26155

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33(12):1293–1298. https://doi.org/10.1038/nbt.3404

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485. https://doi.org/10.1038/nature14592

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Kleinstiver BP, Sousa AA, Walton RT et al (2019) Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 37(3):276–282. https://doi.org/10.1038/s41587-018-0011-0

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Ran FA, Cong L, Yan WX et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191. https://doi.org/10.1038/nature14299

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Esvelt KM, Mali P, Braff JL et al (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116. https://doi.org/10.1038/nmeth.2681

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Campa CC, Weisbach NR, Santinha AJ et al (2019) Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods 16(9):887–893. https://doi.org/10.1038/s41592-019-0508-6

    CAS  CrossRef  PubMed  Google Scholar 

  12. Zetsche B, Heidenreich M, Mohanraju P et al (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34. https://doi.org/10.1038/nbt.3737

    CAS  CrossRef  PubMed  Google Scholar 

  13. Cox DBT, Gootenberg JS, Abudayyeh OO et al (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027. https://doi.org/10.1126/science.aaq0180

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Abudayyeh OO, Gootenberg JS, Essletzbichler P et al (2017) RNA targeting with CRISPR-Cas13. Nature 550(7675):280–284. https://doi.org/10.1038/nature24049

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Abudayyeh OO, Gootenberg JS, Konermann S et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):aaf5573. https://doi.org/10.1126/science.aaf5573

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Maeder ML, Linder SJ, Cascio VM et al (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10(10):977–979. https://doi.org/10.1038/nmeth.2598

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10(10):973–976. https://doi.org/10.1038/nmeth.2600

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838. https://doi.org/10.1038/nbt.2675

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588. https://doi.org/10.1038/nature14136

    CAS  CrossRef  PubMed  Google Scholar 

  21. Hilton IB, D'Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517. https://doi.org/10.1038/nbt.3199

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Thakore PI, D'Ippolito AM, Song L et al (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12(12):1143–1149. https://doi.org/10.1038/nmeth.3630

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Vojta A, Dobrinic P, Tadic V et al (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44(12):5615–5628. https://doi.org/10.1093/nar/gkw159

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Josipovic G, Zoldos V, Vojta A (2019) Active fusions of Cas9 orthologs. J Biotechnol 301:18–23. https://doi.org/10.1016/j.jbiotec.2019.05.306

    CAS  CrossRef  PubMed  Google Scholar 

  25. Bisaria N, Jarmoskaite I, Herschlag D (2017) Lessons from enzyme kinetics reveal specificity principles for RNA-guided nucleases in RNA interference and CRISPR-based genome editing. Cell Syst 4(1):21–29. https://doi.org/10.1016/j.cels.2016.12.010

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Shen CC, Hsu MN, Chang CW et al (2018) Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Res 47(3):e13. https://doi.org/10.1093/nar/gky1165

    CAS  CrossRef  PubMed Central  Google Scholar 

  27. Shin J, Jiang F, Liu JJ et al (2017) Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv 3(7):e1701620. https://doi.org/10.1126/sciadv.1701620

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Nihongaki Y, Yamamoto S, Kawano F et al (2015) CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 22(2):169–174. https://doi.org/10.1016/j.chembiol.2014.12.011

    CAS  CrossRef  PubMed  Google Scholar 

  29. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11(3):198–200. https://doi.org/10.1038/nchembio.1753

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Putri RR, Chen L (2018) Spatiotemporal control of zebrafish (Danio rerio) gene expression using a light-activated CRISPR activation system. Gene 677:273–279. https://doi.org/10.1016/j.gene.2018.07.077

    CAS  CrossRef  PubMed  Google Scholar 

  31. Nihongaki Y, Furuhata Y, Otabe T et al (2017) CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat Methods 14(10):963–966. https://doi.org/10.1038/nmeth.4430

    CAS  CrossRef  PubMed  Google Scholar 

  32. Kim JH, Rege M, Valeri J et al (2019) LADL: light-activated dynamic looping for endogenous gene expression control. Nat Methods 16(7):633–639. https://doi.org/10.1038/s41592-019-0436-5

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Che DL, Duan L, Zhang K et al (2015) The dual characteristics of light-induced cryptochrome 2, homo-oligomerization and Heterodimerization, for optogenetic manipulation in mammalian cells. ACS Synth Biol 4(10):1124–1135. https://doi.org/10.1021/acssynbio.5b00048

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Bugaj LJ, Choksi AT, Mesuda CK et al (2013) Optogenetic protein clustering and signaling activation in mammalian cells. Nat Methods 10(3):249–252. https://doi.org/10.1038/nmeth.2360

    CAS  CrossRef  PubMed  Google Scholar 

  35. Shin Y, Chang YC, Lee DSW et al (2018) Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175(6):1481–1491. e1413. https://doi.org/10.1016/j.cell.2018.10.057

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Tanenbaum ME, Gilbert LA, Qi LS et al (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–646. https://doi.org/10.1016/j.cell.2014.09.039

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33(2):139–142. https://doi.org/10.1038/nbt.3149

    CAS  CrossRef  PubMed  Google Scholar 

  38. Nihongaki Y, Kawano F, Nakajima T et al (2015) Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33(7):755–760. https://doi.org/10.1038/nbt.3245

    CAS  CrossRef  PubMed  Google Scholar 

  39. Nihongaki Y, Otabe T, Ueda Y et al (2019) A split CRISPR-Cpf1 platform for inducible genome editing and gene activation. Nat Chem Biol 15(9):882–888. https://doi.org/10.1038/s41589-019-0338-y

    CAS  CrossRef  PubMed  Google Scholar 

  40. Richter F, Fonfara I, Bouazza B et al (2016) Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Res 44(20):10003–10014. https://doi.org/10.1093/nar/gkw930

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Oakes BL, Nadler DC, Flamholz A et al (2016) Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol 34(6):646–651. https://doi.org/10.1038/nbt.3528

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Zhou XX, Zou X, Chung HK et al (2018) A single-chain Photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription. ACS Chem Biol 13(2):443–448. https://doi.org/10.1021/acschembio.7b00603

    CAS  CrossRef  PubMed  Google Scholar 

  43. Zhou XX, Fan LZ, Li P et al (2017) Optical control of cell signaling by single-chain photoswitchable kinases. Science 355(6327):836–842. https://doi.org/10.1126/science.aah3605

    CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Pathak GP, Spiltoir JI, Hoglund C et al (2017) Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2. Nucleic Acids Res 45(20):e167. https://doi.org/10.1093/nar/gkx260

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Hemphill J, Borchardt EK, Brown K et al (2015) Optical control of CRISPR/Cas9 gene editing. J Am Chem Soc 137(17):5642–5645. https://doi.org/10.1021/ja512664v

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Manna D, Maji B, Gangopadhyay SA et al (2019) A singular system with precise dosing and spatiotemporal control of CRISPR-Cas9. Angew Chem Int Ed Engl 58(19):6285–6289. https://doi.org/10.1002/anie.201900788

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Jain PK, Ramanan V, Schepers AG et al (2016) Development of light-activated CRISPR using guide RNAs with Photocleavable protectors. Angew Chem Int Ed Engl 55(40):12440–12444. https://doi.org/10.1002/anie.201606123

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Shao J, Wang M, Yu G et al (2018) Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc Natl Acad Sci U S A 115(29):E6722–E6730. https://doi.org/10.1073/pnas.1802448115

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Ryu MH, Gomelsky M (2014) Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth Biol 3(11):802–810. https://doi.org/10.1021/sb400182x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Horner M, Muller K, Weber W (2017) Light-responsive promoters. Methods Mol Biol 1651:173–186. https://doi.org/10.1007/978-1-4939-7223-4_13

    CAS  CrossRef  PubMed  Google Scholar 

  51. Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9(3):266–269. https://doi.org/10.1038/nmeth.1892

    CAS  CrossRef  PubMed  Google Scholar 

  52. Qi F, Tan B, Ma F et al (2019) A synthetic light-switchable system based on CRISPR Cas13a regulates the expression of LncRNA MALAT1 and affects the malignant phenotype of bladder cancer cells. Int J Biol Sci 15(8):1630–1636. https://doi.org/10.7150/ijbs.33772

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Pan Y, Yang J, Luan X et al (2019) Near-infrared upconversion-activated CRISPR-Cas9 system: a remote-controlled gene editing platform. Sci Adv 5(4):eaav7199. https://doi.org/10.1126/sciadv.aav7199

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  54. Lyu Y, He S, Li J et al (2019) A photolabile semiconducting polymer nanotransducer for near-infrared regulation of CRISPR/Cas9 gene editing. Angew Chem Int Ed Engl 58(50):18197–18201. https://doi.org/10.1002/anie.201909264

    CAS  CrossRef  PubMed  Google Scholar 

  55. Bondy-Denomy J, Pawluk A, Maxwell KL et al (2013) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493(7432):429–432. https://doi.org/10.1038/nature11723

    CAS  CrossRef  PubMed  Google Scholar 

  56. Pawluk A, Bondy-Denomy J, Cheung VH et al (2014) A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. MBio 5(2):e00896. https://doi.org/10.1128/mBio.00896-14

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  57. Bondy-Denomy J, Garcia B, Strum S et al (2015) Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526(7571):136–139. https://doi.org/10.1038/nature15254

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Rauch BJ, Silvis MR, Hultquist JF et al (2016) Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168(1–2):150–158. e110. https://doi.org/10.1016/j.cell.2016.12.009

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  59. Marino ND, Zhang JY, Borges AL et al (2018) Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362(6411):240–242. https://doi.org/10.1126/science.aau5174

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  60. Knott GJ, Thornton BW, Lobba MJ et al (2019) Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat Struct Mol Biol 26(4):315–321. https://doi.org/10.1038/s41594-019-0208-z

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Pawluk A, Amrani N, Zhang Y et al (2016) Naturally occurring off-switches for CRISPR-Cas9. Cell 167(7):1829–1838. e1829. https://doi.org/10.1016/j.cell.2016.11.017

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Pawluk A, Staals RH, Taylor C et al (2016) Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol 1(8):16085. https://doi.org/10.1038/nmicrobiol.2016.85

    CAS  CrossRef  PubMed  Google Scholar 

  63. Lee J, Mir A, Edraki A et al (2018) Potent Cas9 inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 anti-CRISPR proteins. MBio 9(6):e02321–e02318. https://doi.org/10.1128/mBio.02321-18

    CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Dong GM, Wang S et al (2017) Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 546(7658):436–439. https://doi.org/10.1038/nature22377

    CAS  CrossRef  PubMed  Google Scholar 

  65. Garcia B, Lee J, Edraki A et al (2019) Anti-CRISPR AcrIIA5 potently inhibits all Cas9 homologs used for genome editing. Cell Rep 29(7):1739–1746. e1735. https://doi.org/10.1016/j.celrep.2019.10.017

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Harrington LB, Doxzen KW, Ma E et al (2017) A broad-Spectrum inhibitor of CRISPR-Cas9. Cell 170(6):1224–1233. e1215. https://doi.org/10.1016/j.cell.2017.07.037

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Zhu YW, Zhang F, Huang ZW (2018) Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. BMC Biol 16:32. https://doi.org/10.1186/s12915-018-0504-9

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Bubeck F, Hoffmann MD, Harteveld Z et al (2018) Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9. Nat Methods 15(11):924–927. https://doi.org/10.1038/s41592-018-0178-9

    CAS  CrossRef  PubMed  Google Scholar 

  69. Ma H, Tu LC, Naseri A et al (2016) CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol 214(5):529–537. https://doi.org/10.1083/jcb.201604115

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  70. Renicke C, Schuster D, Usherenko S et al (2013) A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem Biol 20(4):619–626. https://doi.org/10.1016/j.chembiol.2013.03.005

    CAS  CrossRef  PubMed  Google Scholar 

  71. Sun W, Zhang W, Zhang C et al (2017) Light-induced protein degradation in human-derived cells. Biochem Biophys Res Commun 487(2):241–246. https://doi.org/10.1016/j.bbrc.2017.04.041

    CAS  CrossRef  PubMed  Google Scholar 

  72. Bonger KM, Rakhit R, Payumo AY et al (2014) General method for regulating protein stability with light. ACS Chem Biol 9(1):111–115. https://doi.org/10.1021/cb400755b

    CAS  CrossRef  PubMed  Google Scholar 

  73. Liu JJ, Orlova N, Oakes BL et al (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566(7743):218–223. https://doi.org/10.1038/s41586-019-0908-x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  74. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495. https://doi.org/10.1038/nature16526

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  75. Dagliyan O, Tarnawski M, Chu PH et al (2016) Engineering extrinsic disorder to control protein activity in living cells. Science 354(6318):1441–1444. https://doi.org/10.1126/science.aah3404

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  76. Bedbrook CN, Yang KK, Robinson JE et al (2019) Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics. Nat Methods 16(11):1176–1184. https://doi.org/10.1038/s41592-019-0583-8

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  77. Hoffmann MD, Bubeck F, Eils R et al (2018) Controlling cells with light and LOV. Adv Biosystems 2(9):1800098. https://doi.org/10.1002/adbi.201800098

    CrossRef  Google Scholar 

  78. Gainza P, Sverrisson F, Monti F et al (2019) Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat Methods 17(2):184–192. https://doi.org/10.1038/s41592-019-0666-6

    CAS  CrossRef  PubMed  Google Scholar 

  79. Kemaladewi DU, Bassi PS, Erwood S et al (2019) A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572(7767):125–130. https://doi.org/10.1038/s41586-019-1430-x

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katharina Niopek for feedback on the manuscript. M.D.H. was supported by a Helmholtz International Graduate School for Cancer Research scholarship (DKFZ, Heidelberg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Niopek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Mathony, J., Hoffmann, M.D., Niopek, D. (2020). Optogenetics and CRISPR: A New Relationship Built to Last. In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0755-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0755-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols