Skip to main content

Design and Application of Light-Regulated Receptor Tyrosine Kinases

Part of the Methods in Molecular Biology book series (MIMB,volume 2173)

Abstract

Understanding how the activity of membrane receptors and cellular signaling pathways shapes cell behavior is of fundamental interest in basic and applied research. Reengineering receptors to react to light instead of their cognate ligands allows for generating defined signaling inputs with high spatial and temporal precision and facilitates the dissection of complex signaling networks. Here, we describe fundamental considerations in the design of light-regulated receptor tyrosine kinases (Opto-RTKs) and appropriate control experiments. We also introduce methods for transient receptor expression in HEK293 cells, quantitative assessment of signaling activity in reporter gene assays, semiquantitative assessment of (in)activation time courses through Western blot (WB) analysis, and easy to implement light stimulation hardware.

Key words

  • Optogenetics
  • Photoreceptor
  • Receptor tyrosine kinase
  • Transient transfection
  • Reporter gene assay
  • Luciferase assay
  • Western blot

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0755-8_16
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0755-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134. https://doi.org/10.1016/j.cell.2010.06.011

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Neben CL, Lo M, Jura N, Klein OD (2019) Feedback regulation of RTK signaling in development. Dev Biol 447(1):71–89. https://doi.org/10.1016/j.ydbio.2017.10.017

    CAS  CrossRef  PubMed  Google Scholar 

  3. Simi A, Ibáñez CF (2010) Assembly and activation of neurotrophic factor receptor complexes. Dev Neurobiol 70(5):323–331. https://doi.org/10.1002/dneu.20773

    CAS  CrossRef  PubMed  Google Scholar 

  4. Casaletto JB, McClatchey AI (2012) Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer 12(6):387–400. https://doi.org/10.1038/nrc3277

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Robertson SC, Tynan JA, Donoghue DJ (2000) RTK mutations and human syndromes: when good receptors turn bad. Trends Genet 16(6):265–271. https://doi.org/10.1016/S0168-9525(00)02021-7

    CAS  CrossRef  PubMed  Google Scholar 

  6. Goglia AG, Toettcher JE (2019) A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Curr Opin Chem Biol 48:106–113. https://doi.org/10.1016/j.cbpa.2018.11.010

    CAS  CrossRef  PubMed  Google Scholar 

  7. Guglielmi G, Falk HJ, De Renzis S (2016) Optogenetic control of protein function: from intracellular processes to tissue morphogenesis. Trends Cell Biol 26(11):864–874. https://doi.org/10.1016/j.tcb.2016.09.006

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, Ingles-Prieto A, Janovjak H (2014) Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J 33(15):1713–1726. https://doi.org/10.15252/embj.201387695

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Kim N, Kim Jin M, Lee M, Kim Cha Y, Chang K-Y, Heo Won D (2014) Spatiotemporal control of fibroblast growth factor receptor signals by blue light. Chem Biol 21(7):903–912. https://doi.org/10.1016/j.chembiol.2014.05.013

    CAS  CrossRef  PubMed  Google Scholar 

  10. Chang KY, Woo D, Jung H, Lee S, Kim S, Won J, Kyung T, Park H, Kim N, Yang HW, Park JY, Hwang EM, Kim D, Heo WD (2014) Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling. Nat Commun 5:4057. https://doi.org/10.1038/ncomms5057

    CAS  CrossRef  PubMed  Google Scholar 

  11. Bugaj LJ, Spelke DP, Mesuda CK, Varedi M, Kane RS, Schaffer DV (2015) Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering. Nat Commun 6:6898. https://doi.org/10.1038/ncomms7898

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Duan L, Hope JM, Guo S, Ong Q, François A, Kaplan L, Scherrer G, Cui B (2018) Optical activation of TrkA signaling. ACS Synth Biol 7(7):1685–1693. https://doi.org/10.1021/acssynbio.8b00126

    CAS  CrossRef  PubMed  Google Scholar 

  13. Kainrath S, Stadler M, Reichhart E, Distel M, Janovjak H (2017) Green-light-induced inactivation of receptor signaling using cobalamin-binding domains. Angew Chem Int Ed 56(16):4608–4611. https://doi.org/10.1002/anie.201611998

    CAS  CrossRef  Google Scholar 

  14. Reichhart E, Ingles-Prieto A, Tichy A-M, McKenzie C, Janovjak H (2016) A phytochrome sensory domain permits receptor activation by red light. Angew Chem Int Ed 55(21):6339–6342. https://doi.org/10.1002/anie.201601736

    CAS  CrossRef  Google Scholar 

  15. Li Y, Lee M, Kim N, Wu G, Deng D, Kim JM, Liu X, Heo WD, Zi Z (2018) Spatiotemporal control of TGF-β signaling with light. ACS Synth Biol 7(2):443–451. https://doi.org/10.1021/acssynbio.7b00225

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Ramachandran A, Vizán P, Das D, Chakravarty P, Vogt J, Rogers KW, Müller P, Hinck AP, Sapkota GP, Hill CS (2018) TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. ELife 7:e31756. https://doi.org/10.7554/eLife.31756

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Sako K, Pradhan SJ, Barone V, Inglés-Prieto Á, Müller P, Ruprecht V, Čapek D, Galande S, Janovjak H, Heisenberg C-P (2016) Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation. Cell Rep 16(3):866–877. https://doi.org/10.1016/j.celrep.2016.06.036

    CAS  CrossRef  PubMed  Google Scholar 

  18. Muthuswamy SK, Gilman M, Brugge JS (1999) Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol 19(10):6845–6857. https://doi.org/10.1128/MCB.19.10.6845

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Polyethylenimine (PEI), linear (1 mg/mL) (2008). Cold Spring Harb Protoc 2008 (3):pdb.rec11323. doi:https://doi.org/10.1101/pdb.rec11323

  20. Baker JM, Boyce FM (2014) High-throughput functional screening using a homemade dual-glow luciferase assay. J Vis Exp 88. https://doi.org/10.3791/50282

  21. Watanabe N, Mitchison TJ (2002) Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295(5557):1083–1086. https://doi.org/10.1126/science.1067470

    CAS  CrossRef  PubMed  Google Scholar 

  22. Ingles-Prieto A, Reichhart E, Muellner MK, Nowak M, Nijman SM, Grusch M, Janovjak H (2015) Light-assisted small-molecule screening against protein kinases. Nat Chem Biol 11(12):952–954. https://doi.org/10.1038/nchembio.1933

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Bae JH, Boggon TJ, Tome F, Mandiyan V, Lax I, Schlessinger J (2010) Asymmetric receptor contact is required for tyrosine autophosphorylation of fibroblast growth factor receptor in living cells. Proc Natl Acad Sci U S A 107(7):2866–2871. https://doi.org/10.1073/pnas.0914157107

    CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Takahashi F, Yamagata D, Ishikawa M, Fukamatsu Y, Ogura Y, Kasahara M, Kiyosue T, Kikuyama M, Wada M, Kataoka H (2007) AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc Natl Acad Sci U S A 104(49):19625–19630. https://doi.org/10.1073/pnas.0707692104

    CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Strauss HM, Schmieder P, Hughes J (2005) Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1. FEBS Lett 579(18):3970–3974. https://doi.org/10.1016/j.febslet.2005.06.025

    CAS  CrossRef  PubMed  Google Scholar 

  26. Jost M, Fernandez-Zapata J, Polanco MC, Ortiz-Guerrero JM, Chen PY, Kang G, Padmanabhan S, Elias-Arnanz M, Drennan CL (2015) Structural basis for gene regulation by a B12-dependent photoreceptor. Nature 526(7574):536–541. https://doi.org/10.1038/nature14950

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Welm BE, Freeman KW, Chen M, Contreras A, Spencer DM, Rosen JM (2002) Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland. J Cell Biol 157(4):703–714. https://doi.org/10.1083/jcb.200107119

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Mohammadi M, Dikic I, Sorokin A, Burgess WH, Jaye M, Schlessinger J (1996) Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 16(3):977–989

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Janovjak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Kainrath, S., Janovjak, H. (2020). Design and Application of Light-Regulated Receptor Tyrosine Kinases. In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0755-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0755-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols