Skip to main content

Construction of a Multiwell Light-Induction Platform for Traceless Control of Gene Expression in Mammalian Cells

  • Protocol
  • First Online:
Book cover Photoswitching Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2173))

Abstract

Mammalian cells can be engineered to incorporate light-responsive elements that reliably sense stimulation by light and activate endogenous pathways, such as the cAMP or Ca2+ pathway, to control gene expression. Light-inducible gene expression systems offer high spatiotemporal resolution, and are also traceless, reversible, tunable, and inexpensive. Melanopsin, a well-known representative of the animal opsins, is a G-protein-coupled receptor that triggers a Gαq-dependent signaling cascade upon activation with blue light (≈470 nm). Here, we describe how to rewire melanopsin activation by blue light to transgene expression in mammalian cells, with detailed instructions for constructing a 96-LED array platform with multiple tunable parameters for illumination of the engineered cells in multiwell plates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheller L, Fussenegger M (2019) From synthetic biology to human therapy: engineered mammalian cells. Curr Opin Biotechnol 58:108–116. https://doi.org/10.1016/j.copbio.2019.02.023

    Article  CAS  PubMed  Google Scholar 

  2. Bacchus W, Lang M, El-Baba MD et al (2012) Synthetic two-way communication between mammalian cells. Nat Biotechnol 30(10):991–996. https://doi.org/10.1038/nbt.2351

    Article  CAS  PubMed  Google Scholar 

  3. Weber W, Fux C, Daoud-el Baba M et al (2002) Macrolide-based transgene control in mammalian cells and mice. Nat Biotechnol 20(9):901–907. https://doi.org/10.1038/nbt731

    Article  CAS  PubMed  Google Scholar 

  4. Weber W, Marty RR, Link N et al (2003) Conditional human VEGF-mediated vascularization in chicken embryos using a novel temperature-inducible gene regulation (TIGR) system. Nucleic Acids Res 31(12):e69. https://doi.org/10.1093/nar/gng069

    Article  PubMed  PubMed Central  Google Scholar 

  5. Auslander D, Auslander S, Charpin-El Hamri G et al (2014) A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol Cell 55(3):397–408. https://doi.org/10.1016/j.molcel.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  6. Redchuk TA, Omelina ES, Chernov KG et al (2017) Near-infrared optogenetic pair for protein regulation and spectral multiplexing. Nat Chem Biol 13(6):633–639. https://doi.org/10.1038/nchembio.2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weber W, Rimann M, Spielmann M et al (2004) Gas-inducible transgene expression in mammalian cells and mice. Nat Biotechnol 22(11):1440–1444. https://doi.org/10.1038/nbt1021

    Article  CAS  PubMed  Google Scholar 

  8. Mansouri M, Strittmatter T, Fussenegger M (2019) Light-controlled mammalian cells and their therapeutic applications in synthetic biology. Adv Sci (Weinh) 6(1):1800952. https://doi.org/10.1002/advs.201800952

    Article  CAS  Google Scholar 

  9. Repina NA, Rosenbloom A, Mukherjee A et al (2017) At Light speed: advances in optogenetic systems for regulating cell signaling and behavior. Annu Rev Chem Biomol Eng 8:13–39. https://doi.org/10.1146/annurev-chembioeng-060816-101254

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tischer D, Weiner OD (2014) Illuminating cell signalling with optogenetic tools. Nat Rev Mol Cell Biol 15(8):551–558. https://doi.org/10.1038/nrm3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma G, Wen S, He L et al (2017) Optogenetic toolkit for precise control of calcium signaling. Cell Calcium 64:36–46. https://doi.org/10.1016/j.ceca.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kolar K, Weber W (2017) Synthetic biological approaches to optogenetically control cell signaling. Curr Opin Biotechnol 47:112–119. https://doi.org/10.1016/j.copbio.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  13. Muller K, Naumann S, Weber W et al (2015) Optogenetics for gene expression in mammalian cells. Biol Chem 396(2):145–152. https://doi.org/10.1515/hsz-2014-0199

    Article  CAS  PubMed  Google Scholar 

  14. Endo M, Ozawa T (2017) Strategies for development of optogenetic systems and their applications. J Photoch Photobio C 30:10–23. https://doi.org/10.1016/j.jphotochemrev.2016.10.003

    Article  CAS  Google Scholar 

  15. Muller K, Weber W (2013) Optogenetic tools for mammalian systems. Mol BioSyst 9(4):596–608. https://doi.org/10.1039/c3mb25590e

    Article  CAS  PubMed  Google Scholar 

  16. Guru A, Post RJ, Ho YY et al (2015) Making sense of optogenetics. Int J Neuropsychopharmacol 18(11). https://doi.org/10.1093/ijnp/pyv079

  17. Hattar S, Lucas RJ, Mrosovsky N et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):76–81. https://doi.org/10.1038/nature01761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mure LS, Hatori M, Zhu QS et al (2016) Melanopsin-encoded response properties of intrinsically photosensitive retinal ganglion cells. Neuron 90(5):1016–1027. https://doi.org/10.1016/j.neuron.2016.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye HF, Daoud-El Baba M, Peng RW et al (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332(6037):1565–1568. https://doi.org/10.1126/science.1203535

    Article  CAS  PubMed  Google Scholar 

  20. Zhao BX, Wang YC, Tan XH et al (2019) An optogenetic controllable T cell system for hepatocellular carcinoma immunotherapy. Theranostics 9(7):1837–1850. https://doi.org/10.7150/thno.27051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khamo JS, Krishnamurthy VV, Chen QX et al (2019) Optogenetic delineation of receptor tyrosine kinase subcircuits in PC12 cell differentiation. Cell Chem Biol 26(3):400–410.e3. https://doi.org/10.1016/j.chembiol.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  22. Auslander S, Fuchs D, Hurlemann S et al (2016) Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay. Nucleic Acids Res 44(10). https://doi.org/10.1093/nar/gkw117

Download references

Acknowledgments

This work was supported by the European Research Council (ERC) advanced grant (ElectroGene; grant no. 785800) and in part by the National Centre of Competence in Research (NCCR) for Molecular Systems Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fussenegger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mansouri, M., Lichtenstein, S., Strittmatter, T., Buchmann, P., Fussenegger, M. (2020). Construction of a Multiwell Light-Induction Platform for Traceless Control of Gene Expression in Mammalian Cells. In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0755-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0755-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics