Skip to main content

Construction of a Multiwell Light-Induction Platform for Traceless Control of Gene Expression in Mammalian Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 2173)

Abstract

Mammalian cells can be engineered to incorporate light-responsive elements that reliably sense stimulation by light and activate endogenous pathways, such as the cAMP or Ca2+ pathway, to control gene expression. Light-inducible gene expression systems offer high spatiotemporal resolution, and are also traceless, reversible, tunable, and inexpensive. Melanopsin, a well-known representative of the animal opsins, is a G-protein-coupled receptor that triggers a Gαq-dependent signaling cascade upon activation with blue light (≈470 nm). Here, we describe how to rewire melanopsin activation by blue light to transgene expression in mammalian cells, with detailed instructions for constructing a 96-LED array platform with multiple tunable parameters for illumination of the engineered cells in multiwell plates.

Key words

  • Optogenetics
  • Inducible gene expression
  • Cell engineering
  • Mammalian cells
  • Synthetic biology

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0755-8_13
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0755-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Scheller L, Fussenegger M (2019) From synthetic biology to human therapy: engineered mammalian cells. Curr Opin Biotechnol 58:108–116. https://doi.org/10.1016/j.copbio.2019.02.023

    CAS  CrossRef  PubMed  Google Scholar 

  2. Bacchus W, Lang M, El-Baba MD et al (2012) Synthetic two-way communication between mammalian cells. Nat Biotechnol 30(10):991–996. https://doi.org/10.1038/nbt.2351

    CAS  CrossRef  PubMed  Google Scholar 

  3. Weber W, Fux C, Daoud-el Baba M et al (2002) Macrolide-based transgene control in mammalian cells and mice. Nat Biotechnol 20(9):901–907. https://doi.org/10.1038/nbt731

    CAS  CrossRef  PubMed  Google Scholar 

  4. Weber W, Marty RR, Link N et al (2003) Conditional human VEGF-mediated vascularization in chicken embryos using a novel temperature-inducible gene regulation (TIGR) system. Nucleic Acids Res 31(12):e69. https://doi.org/10.1093/nar/gng069

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Auslander D, Auslander S, Charpin-El Hamri G et al (2014) A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol Cell 55(3):397–408. https://doi.org/10.1016/j.molcel.2014.06.007

    CAS  CrossRef  PubMed  Google Scholar 

  6. Redchuk TA, Omelina ES, Chernov KG et al (2017) Near-infrared optogenetic pair for protein regulation and spectral multiplexing. Nat Chem Biol 13(6):633–639. https://doi.org/10.1038/nchembio.2343

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Weber W, Rimann M, Spielmann M et al (2004) Gas-inducible transgene expression in mammalian cells and mice. Nat Biotechnol 22(11):1440–1444. https://doi.org/10.1038/nbt1021

    CAS  CrossRef  PubMed  Google Scholar 

  8. Mansouri M, Strittmatter T, Fussenegger M (2019) Light-controlled mammalian cells and their therapeutic applications in synthetic biology. Adv Sci (Weinh) 6(1):1800952. https://doi.org/10.1002/advs.201800952

    CAS  CrossRef  Google Scholar 

  9. Repina NA, Rosenbloom A, Mukherjee A et al (2017) At Light speed: advances in optogenetic systems for regulating cell signaling and behavior. Annu Rev Chem Biomol Eng 8:13–39. https://doi.org/10.1146/annurev-chembioeng-060816-101254

    CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Tischer D, Weiner OD (2014) Illuminating cell signalling with optogenetic tools. Nat Rev Mol Cell Biol 15(8):551–558. https://doi.org/10.1038/nrm3837

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Ma G, Wen S, He L et al (2017) Optogenetic toolkit for precise control of calcium signaling. Cell Calcium 64:36–46. https://doi.org/10.1016/j.ceca.2017.01.004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Kolar K, Weber W (2017) Synthetic biological approaches to optogenetically control cell signaling. Curr Opin Biotechnol 47:112–119. https://doi.org/10.1016/j.copbio.2017.06.010

    CAS  CrossRef  PubMed  Google Scholar 

  13. Muller K, Naumann S, Weber W et al (2015) Optogenetics for gene expression in mammalian cells. Biol Chem 396(2):145–152. https://doi.org/10.1515/hsz-2014-0199

    CAS  CrossRef  PubMed  Google Scholar 

  14. Endo M, Ozawa T (2017) Strategies for development of optogenetic systems and their applications. J Photoch Photobio C 30:10–23. https://doi.org/10.1016/j.jphotochemrev.2016.10.003

    CAS  CrossRef  Google Scholar 

  15. Muller K, Weber W (2013) Optogenetic tools for mammalian systems. Mol BioSyst 9(4):596–608. https://doi.org/10.1039/c3mb25590e

    CAS  CrossRef  PubMed  Google Scholar 

  16. Guru A, Post RJ, Ho YY et al (2015) Making sense of optogenetics. Int J Neuropsychopharmacol 18(11). https://doi.org/10.1093/ijnp/pyv079

  17. Hattar S, Lucas RJ, Mrosovsky N et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):76–81. https://doi.org/10.1038/nature01761

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Mure LS, Hatori M, Zhu QS et al (2016) Melanopsin-encoded response properties of intrinsically photosensitive retinal ganglion cells. Neuron 90(5):1016–1027. https://doi.org/10.1016/j.neuron.2016.04.016

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Ye HF, Daoud-El Baba M, Peng RW et al (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332(6037):1565–1568. https://doi.org/10.1126/science.1203535

    CAS  CrossRef  PubMed  Google Scholar 

  20. Zhao BX, Wang YC, Tan XH et al (2019) An optogenetic controllable T cell system for hepatocellular carcinoma immunotherapy. Theranostics 9(7):1837–1850. https://doi.org/10.7150/thno.27051

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Khamo JS, Krishnamurthy VV, Chen QX et al (2019) Optogenetic delineation of receptor tyrosine kinase subcircuits in PC12 cell differentiation. Cell Chem Biol 26(3):400–410.e3. https://doi.org/10.1016/j.chembiol.2018.11.004

    CAS  CrossRef  PubMed  Google Scholar 

  22. Auslander S, Fuchs D, Hurlemann S et al (2016) Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay. Nucleic Acids Res 44(10). https://doi.org/10.1093/nar/gkw117

Download references

Acknowledgments

This work was supported by the European Research Council (ERC) advanced grant (ElectroGene; grant no. 785800) and in part by the National Centre of Competence in Research (NCCR) for Molecular Systems Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fussenegger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Mansouri, M., Lichtenstein, S., Strittmatter, T., Buchmann, P., Fussenegger, M. (2020). Construction of a Multiwell Light-Induction Platform for Traceless Control of Gene Expression in Mammalian Cells. In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0755-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0755-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols