Abstract
The advancement of transcriptomic studies in plant parasitic nematodes will greatly benefit from the development of single-nematode RNA-seq methods. Since many plant parasitic nematodes are obligate parasites, it is often difficult to efficiently obtain sufficient amounts of nematodes for transcriptomic studies. Here we have adapted SMART-Seq2 for single-nematode RNA-seq requiring only an individual nematode for a sample replicate. This protocol provides a detailed step-by-step procedure of the RNA-seq workflow starting from lysis of the nematode to quantification of transcripts using a user-friendly online platform.
Key words
- RNA-seq
- Nematode
- Smart-seq2
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Gerard GF, Fox DK, Nathan M, Dalessio JM (1997) Reverse transcriptase—the use of cloned moloney murine leukemia virus reverse transcriptase to synthesize DNA from RNA. Mol Biotechnol 8:61–77. https://doi.org/10.1007/bf02762340
Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART (TM) approach for full-length cDNA library construction. BioTechniques 30:892–897. https://doi.org/10.2144/01304pf02
Chenchik A, Diachenko L, Moqadam F, Tarabykin V, Lukyanov S, Siebert PD (1996) Full-length cDNA cloning and determination of mRNA 5′ and 3′ ends by amplification of adaptor-ligated cDNA. BioTechniques 21:526–534
Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098. https://doi.org/10.1038/nmeth.2639
Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9:171–181. https://doi.org/10.1038/nprot.2014.006
Kulpa D, Topping R, Telesnitsky A (1997) Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J 16:856–865. https://doi.org/10.1093/emboj/16.4.856
Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81. https://doi.org/10.1016/s0167-7799(02)00038-0
Picelli S (2017) Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol 14:637–650. https://doi.org/10.1080/15476286.2016.1201618
Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ, Korkin D, Mitchum MG (2018) Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci Rep 8:15. https://doi.org/10.1038/s41598-018-20536-5
Kumar M, Gantasala NP, Roychowdhury T, Thakur PK, Banakar P, Shukla RN, Jones MGK, Rao U (2014) De Novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae. PLoS One 9:16. https://doi.org/10.1371/journal.pone.0096311
Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, Tsai IJ, Beasley H, Blok V, Cock PJA, Eves-van den Akker S, Holroyd N, Hunt M, Mantelin S, Naghra H, Pain A, Palomares-Rius JE, Zarowiecki M, Berriman M, Jones JT, Urwin PE (2014) The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol 15:17. https://doi.org/10.1186/gb-2014-15-3-r43
Eves-van den Akker S, Lilley CJ, Danchin EGJ, Rancurel C, Cock PJA, Urwin PE, Jones JT (2014) The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biol Evol 6:2181–2194. https://doi.org/10.1093/gbe/evu171
Choi I, Subramanian P, Shim D, Oh BJ, Hahn BS (2017) RNA-Seq of plant-parasitic nematode Meloidogyne incognita at various stages of its development. Front Genet 8:3. https://doi.org/10.3389/fgene.2017.00190
Perry RN, Moens M (2011) Survival of parasitic nematodes outside the host. In: Perry RN, Wharton DA (eds) Molecular and physiological basis of nematode survival. Cabi Publishing-C a B Int, Wallingford, pp 1–27
Grencis R, Harnett W (2011) Survival of animal-parasitic nematodes inside the animal host. In: Perry RN, Wharton DA (eds) Molecular and physiological basis of nematode survival. Cabi Publishing-C a B Int, Wallingford, pp 66–85
Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-Lopez R, Palomares-Rius JE, Wesemael WML, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961. https://doi.org/10.1111/mpp.12057
Moens M, Perry RN (2009) Migratory plant endoparasitic nematodes: a group rich in contrasts and divergence. Annu Rev Phytopathol 47:313–332. https://doi.org/10.1146/annurev-phyto-080508-081846
Bell CA, Lilley CJ, McCarthy J, Atkinson HJ, Urwin PE (2019) Plant-parasitic nematodes respond to root exudate signals with host-specific gene expression patterns. PLoS Pathog 15:19. https://doi.org/10.1371/journal.ppat.1007503
Trombetta JJ, Gennert D, Lu D, Satija R, Shalek AK, Regev A (2014) Preparation of single-cell RNA-Seq libraries for next generation sequencing. Curr Protoc Mol Biol 107:4.22.21–4.22.17. https://doi.org/10.1002/0471142727.mb0422s107
Serra L, Chang D, Macchietto M, Williams K, Murad R, Lu D, Dillman AR, Mortazavi A (2018) Adapting the Smart-seq2 protocol for robust single worm RNA-seq. Bio Protoc 8:e2729. https://doi.org/10.21769/BioProtoc.2729
Lu DH, Macchietto M, Chang D, Barros MM, Baldwin J, Mortazavi A, Dillman AR (2017) Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathog 13:31. https://doi.org/10.1371/journal.ppat.1006302
Macchietto M, Angdembey D, Heidarpour N, Serra L, Rodriguez B, El-Ali N, Mortazavi A (2017) Comparative transcriptomics of Steinernema and Caenorhabditis single embryos reveals orthologous gene expression convergence during late embryogenesis. Genome Biol Evol 9:2681–2696. https://doi.org/10.1093/gbe/evx195
Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Gruning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D (2018) The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544. https://doi.org/10.1093/nar/gky379
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2016) Salmon provides accurate, fast, and bias-aware transcript expression estimates using dual-phase inference. bioRxiv:021592. https://doi.org/10.1101/021592
Shaham S (2006) Methods in cell biology. WormBook. https://doi.org/10.1895/wormbook.1.49.1
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.21–21.29.29. https://doi.org/10.1002/0471142727.mb2129s109
Acknowledgments
This work is supported in part by NIH NIAID R21 AI142121 to A. Dillman.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Chang, D., Serra, L., Lu, D., Mortazavi, A., Dillman, A. (2021). A Revised Adaptation of the Smart-Seq2 Protocol for Single-Nematode RNA-Seq. In: Jin, H., Kaloshian, I. (eds) RNA Abundance Analysis . Methods in Molecular Biology, vol 2170. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0743-5_6
Download citation
DOI: https://doi.org/10.1007/978-1-0716-0743-5_6
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-0742-8
Online ISBN: 978-1-0716-0743-5
eBook Packages: Springer Protocols