Skip to main content

Thermostability Assays: a Generic and Versatile Tool for Studying the Functional and Structural Properties of Membrane Proteins in Detergents

  • Protocol
  • First Online:
Biophysics of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2168))

Abstract

There are very few generic methods to assess the stability and functional properties of membrane proteins solubilized in detergent. For this purpose, a thiol-reactive fluorochrome N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (CPM) can be used. An unfolding profile is obtained when the fluorochrome becomes fluorescent on reaction with cysteine residues that have been exposed during thermal denaturation of the protein population. The method was initially developed to optimize the stability of membrane proteins for crystallization studies, but in the course of our work we found many other applications. First, the assay can be used to study the binding of inhibitors, substrates, lipids, and other effectors to membrane proteins. Second, the assay can be used to understand the dynamics of proteins, allowing states to be defined by changes in accessibility of cysteine residues or by changes in specific amino acid interactions. Finally, the assay can be used to study state-dependent domain interactions, for example, as part of regulatory mechanisms. The CPM thermostability assay represents a broadly applicable and versatile tool for a wide range of applications in the functional and structural analysis of membrane proteins.

This research was supported by the Medical Research Council (grant MC_UU_00015/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAC:

Mitochondrial ADP/ATP carrier

APC:

Mitochondrial ATP-Mg/Pi carrier

ATR:

Atractyloside

BKA:

Bongkrekic acid

CATR:

Carboxyatractyloside

CPM:

N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]

DDM:

Dodecyl maltoside

DM:

Decyl maltoside

DMNG:

Decyl maltose neopentyl glycol

LMNG:

Lauryl maltose neopentyl glycol

PC:

Phosphocholine

T m :

Apparent melting temperature

TOCL/CL:

Tetraoleoyl cardiolipin (18:1)

UDM:

Undecyl maltoside

References

  1. Bill RM, Henderson PJ, Iwata S, Kunji ER, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29:335–340

    Article  CAS  Google Scholar 

  2. Newstead S, Kim H, von Heijne G, Iwata S, Drew D (2007) High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104:13936–13941

    Article  CAS  Google Scholar 

  3. Magnani F, Serrano-Vega MJ, Shibata Y, Abdul-Hussein S, Lebon G, Miller-Gallacher J, Singhal A, Strege A, Thomas JA, Tate CG (2016) A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat Protoc 11:1554–1571

    Article  Google Scholar 

  4. Alexandrov AI, Mileni M, Chien EY, Hanson MA, Stevens RC (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16:351–359

    Article  CAS  Google Scholar 

  5. Crichton PG, Lee Y, Ruprecht JJ, Cerson E, Thangaratnarajah C, King MS, Kunji ER (2015) Trends in thermostability provide information on the nature of substrate, inhibitor, and lipid interactions with mitochondrial carriers. J Biol Chem 290:8206–8217

    Article  CAS  Google Scholar 

  6. Majd H, King MS, Palmer SM, Smith AC, Elbourne LDH, Paulsen IT, Sharples D, Henderson PJF, Kunji ERS (2018) Screening of candidate substrates and coupling ions of transporters by thermostability shift assays. eLife 7:e38821

    Google Scholar 

  7. Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778:1978–2021

    Article  CAS  Google Scholar 

  8. Kunji ER, Aleksandrova A, King MS, Majd H, Ashton VL, Cerson E, Springett R, Kibalchenko M, Tavoulari S, Crichton PG, Ruprecht JJ (2016) The transport mechanism of the mitochondrial ADP/ATP carrier. Biochim Biophys Acta 1863:2379–2393

    Article  CAS  Google Scholar 

  9. Ruprecht JJ, King MS, Zogg T, Aleksandrova AA, Pardon E, Crichton PG, Steyaert J, Kunji ERS (2019) The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell 176: 435–447.

    Google Scholar 

  10. Ruprecht JJ, Kunji ERS (2019) The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem Sci.

    Google Scholar 

  11. Ruprecht JJ, Kunji ERS (2019) Structural changes in the transport cycle of the mitochondrial ADP/ATP carrier. Curr Opin Struct Biol 57: 135–144.

    Google Scholar 

  12. Harborne SPD, Kunji ERS (2018) Calcium-regulated mitochondrial ATP-Mg/Pi carriers evolved from a fusion of an EF-hand regulatory domain with a mitochondrial ADP/ATP carrier-like domain. IUBMB life 70: 1222–1232.

    Google Scholar 

  13. Kunji ERS, Harding M (2003) Projection structure of the atractyloside-inhibited mitochondrial ADP/ATP carrier of Saccharomyces cerevisiae. J Biol Chem 278:36985–36988

    Article  CAS  Google Scholar 

  14. Bamber L, Harding M, Butler PJG, Kunji ERS (2006) Yeast mitochondrial ADP/ATP carriers are monomeric in detergents. Proc Natl Acad Sci U S A 103:16224–16229

    Article  CAS  Google Scholar 

  15. Bamber L, Harding M, Monné M, Slotboom DJ, Kunji ERS (2007) The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes. Proc Natl Acad Sci U S A 104:10830–10834

    Article  CAS  Google Scholar 

  16. Bamber L, Slotboom DJ, Kunji ERS (2007) Yeast mitochondrial ADP/ATP carriers are monomeric in detergents as demonstrated by differential affinity purification. J Mol Biol 371:388–395

    Article  CAS  Google Scholar 

  17. Kunji ERS, Harding M, Butler PJG, Akamine P (2008) Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography. Methods 46:62–72

    Article  CAS  Google Scholar 

  18. Crichton PG, Harding M, Ruprecht JJ, Lee Y, Kunji ERS (2013) Lipid, detergent, and Coomassie Blue G-250 affect the migration of small membrane proteins in blue native gels; mitochondrial carriers migrate as monomers not dimers. J Biol Chem 288:22163–22173

    Article  CAS  Google Scholar 

  19. Harborne SP, Ruprecht JJ, Kunji ER (2015) Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier. Biochim Biophys Acta 1847:1245–1253

    Article  CAS  Google Scholar 

  20. Saraste M, Walker JE (1982) Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett 144:250–254

    Article  CAS  Google Scholar 

  21. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44

    Article  CAS  Google Scholar 

  22. Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, Mccoy AJ, Kunji ERS (2014) Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc Natl Acad Sci U S A 111:E426–E434

    Article  CAS  Google Scholar 

  23. Harborne SPD, King MS, Crichton PG, Kunji ERS (2017) Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism. Sci Rep 7:45383

    Article  CAS  Google Scholar 

  24. King MS, Kerr M, Crichton PG, Springett R, Kunji ER (2016) Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier. Biochim Biophys Acta 1857:14–22

    Article  CAS  Google Scholar 

  25. Kunji ERS, Robinson AJ (2006) The conserved substrate binding site of mitochondrial carriers. Biochim Biophys Acta 1757:1237–1248

    Article  CAS  Google Scholar 

  26. Robinson AJ, Kunji ERS (2006) Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci U S A 103:2617–2622

    Article  CAS  Google Scholar 

  27. Robinson AJ, Overy C, Kunji ER (2008) The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A 105:17766–17771

    Article  CAS  Google Scholar 

  28. Nelson DR, Felix CM, Swanson JM (1998) Highly conserved charge-pair networks in the mitochondrial carrier family. J Mol Biol 277:285–308

    Article  CAS  Google Scholar 

  29. Springett R, King MS, Crichton PG, Kunji ERS (2017) Modelling the free energy profile of the mitochondrial ADP/ATP carrier. Biochim Biophys Acta 1858:906–914

    Article  CAS  Google Scholar 

  30. Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P (2018) Perturbations of native membrane protein structure in alkyl phosphocholine detergents: a critical assessment of NMR and biophysical studies. Chem Rev 118:3559–3607

    Article  CAS  Google Scholar 

  31. Kurauskas V, Hessel A, Ma P, Lunetti P, Weinhaupl K, Imbert L, Brutscher B, King MS, Sounier R, Dolce V, Kunji ERS, Capobianco L, Chipot C, Dehez F, Bersch B, Schanda P (2018) How detergent impacts membrane proteins: atomic-level views of mitochondrial carriers in dodecylphosphocholine. J Phys Chem Lett 9:933–938

    Article  CAS  Google Scholar 

  32. Hashimoto M, Shinohara Y, Majima E, Hatanaka T, Yamazaki N, Terada H (1999) Expression of the bovine heart mitochondrial ADP/ATP carrier in yeast mitochondria: significantly enhanced expression by replacement of the N-terminal region of the bovine carrier by the corresponding regions of the yeast carriers. Biochim Biophys Acta 1409:113–124

    Article  CAS  Google Scholar 

  33. Prive GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397

    Article  CAS  Google Scholar 

  34. le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    Article  Google Scholar 

  35. Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot JL, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008

    Article  CAS  Google Scholar 

  36. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  37. Klingenberg M (2009) Cardiolipin and mitochondrial carriers. Biochim Biophys Acta 1788:2048–2058

    Article  CAS  Google Scholar 

  38. Duncan AL, Ruprecht JJ, Kunji ERS, Robinson AJ (2018) Cardiolipin dynamics and binding to conserved residues in the mitochondrial ADP/ATP carrier. Biochim Biophys Acta 1860:1035–1045

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund R. S. Kunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Harborne, S.P.D., King, M.S., Kunji, E.R.S. (2020). Thermostability Assays: a Generic and Versatile Tool for Studying the Functional and Structural Properties of Membrane Proteins in Detergents. In: Postis, V.L.G., Goldman, A. (eds) Biophysics of Membrane Proteins. Methods in Molecular Biology, vol 2168. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0724-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0724-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0723-7

  • Online ISBN: 978-1-0716-0724-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics