Skip to main content

Quantifying the Interaction of Phosphite with ABC Transporters: MicroScale Thermophoresis and a Novel His-Tag Labeling Approach

Part of the Methods in Molecular Biology book series (MIMB,volume 2168)

Abstract

The combination of MicroScale Thermophoresis (MST) and near-native site-specific His-tag labeling enables simple, robust, and reliable determination of the binding affinity between proteins and ligands. To demonstrate its applicability for periplasmic proteins, we provide a detailed protocol for determination of the binding affinity of phosphite to three ABC transporter periplasmic-binding proteins from environmental microorganisms. ABC transporters are central to many important biomedical phenomena, including resistance of cancers and pathogenic microbes to drugs. The protocol described here can be used to quantify protein-ligand and protein-protein interactions for other soluble, membrane-associated and integral membrane proteins.

Key words

  • MicroScale thermophoresis58
  • Membrane proteins
  • ABC transporter
  • His-tag labeling
  • RED-tris-NTA

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0724-4_2
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0724-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lodish H, Berk A, Zipursky SL, Matsudaria P, Baltiomore D, Darnell J (2000) Section 3.4, Membrane proteins. In: Freeman WH (ed) Molecular cell, New York

    Google Scholar 

  2. Almén MS et al (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50–50

    CrossRef  Google Scholar 

  3. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    CrossRef  CAS  Google Scholar 

  4. Jones P, George A (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61(6):682–699

    CrossRef  CAS  Google Scholar 

  5. Dean M, Hamon Y, Chimini G (2001) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42(7):1007–1017

    CrossRef  CAS  Google Scholar 

  6. Koning SM et al (2001) Cellobiose uptake in the hyperthermophilic archaeon Pyrococcus furiosus is mediated by an inducible, high-affinity ABC transporter. J Bacteriol 183(17):4979–4984

    CrossRef  CAS  Google Scholar 

  7. Gorbulev S, Abele R, Tampé R (2001) Allosteric crosstalk between peptide-binding, transport, and ATP hydrolysis of the ABC transporter TAP. Proc Natl Acad Sci U S A 98(7):3732–3737

    CrossRef  CAS  Google Scholar 

  8. Abdullah HQ et al (2017) ATP binding and hydrolysis disrupts the high-affinity interaction between the heme ABC transporter HmuUV and its cognate substrate binding protein. J Biol Chem 292(35):14617–14624

    CrossRef  Google Scholar 

  9. Su C-C, Nikaido H, Yu EW (2007) Ligand-transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay. FEBS Lett 581(25):4972–4976

    CrossRef  CAS  Google Scholar 

  10. Jerabek-Willemsen M et al (2014) MicroScale Thermophoresis: interaction analysis and beyond. J Mol Struct 1077:101–113

    CrossRef  CAS  Google Scholar 

  11. Berna-Erro A et al (2017) Structural determinants of 5′, 6′-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep 7(1):10522

    CrossRef  Google Scholar 

  12. Roche JV et al (2017) Phosphorylation of human aquaporin 2 (AQP2) allosterically controls its interaction with the lysosomal trafficking protein LIP5. J Biol Chem 292(35):14636–14648

    CrossRef  CAS  Google Scholar 

  13. Parker JL, Newstead S (2014) Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507(7490):68–72

    CrossRef  CAS  Google Scholar 

  14. Girke C et al (2015) High yield expression and purification of equilibrative nucleoside transporter 7 (ENT7) from Arabidopsis thaliana. Biochim Biophys Acta 1850(9):1921–1929

    CrossRef  CAS  Google Scholar 

  15. Koch S et al (2016) Lipids activate SecA for high affinity binding to the SecYEG complex. J Biol Chem 291(43):22534–22543

    CrossRef  CAS  Google Scholar 

  16. Eggensperger S et al (2014) An annular lipid belt is essential for allosteric coupling and viral inhibition of the antigen translocation complex TAP (transporter associated with antigen processing). J Biol Chem 289(48):33098–33108

    CrossRef  CAS  Google Scholar 

  17. Denèfle T et al (2016) Thrombospondin-1 mimetic agonist peptides induce selective death in tumor cells: design, synthesis, and structure–activity relationship studies. J Med Chem 59(18):8412–8421

    CrossRef  Google Scholar 

  18. Wan C et al (2015) Insights into the molecular recognition of the granuphilin C2A domain with PI (4, 5) P2. Chem Phys Lipids 186:61–67

    CrossRef  CAS  Google Scholar 

  19. Baaske P et al (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed 49(12):2238–2241

    CrossRef  CAS  Google Scholar 

  20. Lou J et al (1999) Fluorescence-based thermometry: principles and applications. Rev Anal Chem 18(4):235–284

    CrossRef  CAS  Google Scholar 

  21. Ross D, Gaitan M, Locascio LE (2001) Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal Chem 73(17):4117–4123

    CrossRef  CAS  Google Scholar 

  22. Dhont JK et al (2007) Thermodiffusion of charged colloids: single-particle diffusion. Langmuir 23(4):1674–1683

    CrossRef  CAS  Google Scholar 

  23. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103(52):19678–19682

    CrossRef  CAS  Google Scholar 

  24. Bartoschik T et al (2018) Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by MicroScale Thermophoresis. Sci Rep 8(1):4977

    CrossRef  Google Scholar 

  25. Polyviou D et al (2015) Phosphite utilization by the globally important marine diazotroph Trichodesmium. Environ Microbiol Rep 7(6):824–830

    CrossRef  CAS  Google Scholar 

  26. Feingersch R et al (2012) Potential for phosphite and phosphonate utilization by Prochlorococcus. ISME J 6(4):827

    CrossRef  CAS  Google Scholar 

  27. Metcalf WW, Wolfe RS (1998) Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J Bacteriol 180(21):5547–5558

    CrossRef  CAS  Google Scholar 

  28. Bisson C et al (2017) The molecular basis of phosphite and hypophosphite recognition by ABC-transporters. Nat Commun 8(1):1746

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuska Tschammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Bartoschik, T., Gupta, A., Kern, B., Hitchcock, A., Adams, N.B.P., Tschammer, N. (2020). Quantifying the Interaction of Phosphite with ABC Transporters: MicroScale Thermophoresis and a Novel His-Tag Labeling Approach. In: Postis, V.L.G., Goldman, A. (eds) Biophysics of Membrane Proteins. Methods in Molecular Biology, vol 2168. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0724-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0724-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0723-7

  • Online ISBN: 978-1-0716-0724-4

  • eBook Packages: Springer Protocols