Skip to main content

MDockPeP: A Web Server for Blind Prediction of Protein–Peptide Complex Structures

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2165))

Abstract

Protein–peptide interactions mediate a wide range of important cellular tasks. In silico prediction of protein–peptide complex structure is highly desirable for mechanistic investigation of these processes and for therapeutic design. Recently, we developed a docking-based method for predicting protein–peptide complex structures, which starts with the peptide sequence and globally docks the all-atom, flexible peptide onto the protein structure. The produced modes are then evaluated with a statistical potential-based scoring function. The method has been implemented into an online server, MDockPeP server, which is freely available at http://zougrouptoolkit.missouri.edu/mdockpep. The server can be used for protein–peptide complex structure prediction. The server can also be used for initial-stage sampling of the protein–peptide binding modes for computational-demanding simulation or docking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petsalaki E, Russell RB (2008) Peptide-mediated interactions in biological systems: new discoveries and applications. Curr Opin Biotechnol 19:344–350

    Article  CAS  Google Scholar 

  2. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  Google Scholar 

  3. Verschueren E, Vanhee P, Rousseau F, Schymkowitz J, Serrano L (2013) Protein-peptide complex prediction through fragment interaction patterns. Structure 21:789–797

    Article  CAS  Google Scholar 

  4. Lee H, Heo L, Lee MS, Seok C (2015) GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res 43:W431–W435

    Article  CAS  Google Scholar 

  5. London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server-high resolution modeling of peptide–protein interactions. Nucleic Acids Res 39:W249–W253

    Article  CAS  Google Scholar 

  6. Trellet M, Melquiond AS, Bonvin AM (2013) A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One 8:e58769

    Article  CAS  Google Scholar 

  7. Schindler CE, de Vries SJ, Zacharias M (2015) Fully blind peptide-protein docking with pepATTRACT. Structure 23:1507–1515

    Article  CAS  Google Scholar 

  8. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res 43:W419–W424

    Article  CAS  Google Scholar 

  9. Yan C, Xu X, Zou X (2016) Fully blind docking at the atomic level for protein-peptide complex structure prediction. Structure 24:1842–1853

    Article  CAS  Google Scholar 

  10. Porter KA et al (2017) ClusPro PeptiDock: efficient global docking of peptide recognition motifs using FFT. Bioinformatics 33:3299–3301

    Article  CAS  Google Scholar 

  11. Alam N et al (2017) High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Comput Biol 13:e1005905

    Article  Google Scholar 

  12. Zhou P, Jin B, Li H, Huang SY (2018) HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Res 46:W443–W450

    Article  CAS  Google Scholar 

  13. Ciemny M, Kurcinski M, Kamel K, Kolinski A, Alam N, Schueler-Furman O, Kmiecik S (2018) Protein-peptide docking: opportunities and challenges. Drug Discov Today 23:1530–1537

    Article  CAS  Google Scholar 

  14. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199

    Article  CAS  Google Scholar 

  15. Xu X, Yan C, Zou X (2018) MDockPeP: an ab initio protein–peptide docking server. J Comput Chem 39:2409–2413

    Article  CAS  Google Scholar 

  16. Webb B, Sali A (2014) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 47:5.6.1–5.6.32

    Article  Google Scholar 

  17. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci 89:10915–10919

    Article  CAS  Google Scholar 

  18. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pettersen EF et al (2004) UCSF chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  20. Rego N, Koes D (2014) 3Dmol.Js: molecular visualization with WebGL. Bioinformatics 31:1322–1324

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01GM109980 (PI: XZ), NIH R01HL126774, and NIH R01HL142301 (PI: Cui) to XZ. The computations were performed on the high-performance computing infrastructure supported by NSF CNS-1429294 (PI: Chi-Ren Shyu) and the HPC resources supported by the University of Missouri Bioinformatics Consortium (UMBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xu, X., Zou, X. (2020). MDockPeP: A Web Server for Blind Prediction of Protein–Peptide Complex Structures. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 2165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0708-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0708-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0707-7

  • Online ISBN: 978-1-0716-0708-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics