Skip to main content

Forget About Electron Micrographs: A Novel Guide for Using 3D Models for Quantitative Analysis of Dense Reconstructions

Part of the Neuromethods book series (NM,volume 155)

Abstract

With the rapid evolvement in the automation of serial micrographs, acquiring fast and reliably giga- to terabytes of data is becoming increasingly common. Optical, or physical sectioning, and subsequent imaging of biological tissue at high resolution, offers the chance to postprocess, segment, and reconstruct micro- and nanoscopical structures, and then reveal spatial arrangements previously inaccessible or hardly imaginable with simple, single section, two-dimensional images. In some cases, three-dimensional models highlighted peculiar morphologies in a way that two-dimensional representations cannot be considered representative of that particular object morphology anymore, like mitochondria for instance. Observations like these are taking scientists toward a more common use of 3D models to formulate functional hypothesis, based on morphology. Because such models are so rich in details, we developed tools allowing for performing qualitative, visual assessments, as well as quantification directly in 3D. In this chapter we will revise our working pipeline and show a step-by-step guide to analyze our dataset.

Key words

  • 3DEM
  • 3D models
  • 3D reconstruction
  • 3D analysis
  • Virtual reality
  • Morphology

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0691-9_14
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0691-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Parekh R, Ascoli GA (2013) Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron 77:1017–1038. https://doi.org/10.1016/j.neuron.2013.03.008

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Coggan JS, Keller D, Calì C et al (2018) Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLoS Comput Biol 14(8): e1006392

    Google Scholar 

  3. Borrett S, Hughes L (2016) Reporting methods for processing and analysis of data from serial block face scanning electron microscopy. J Microsc 263:3–9. https://doi.org/10.1111/jmi.12377

    CAS  CrossRef  PubMed  Google Scholar 

  4. Lichtman JW, Pfister H, Shavit N (2014) The big data challenges of connectomics. Nat Neurosci 17:1448–1454. https://doi.org/10.1038/nn.3837

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Neuro Cloud Consortium. Electronic address: jovo@jhu.edu, Neuro Cloud Consortium (2016) To the cloud! A grassroots proposal to accelerate brain science discovery. Neuron 92:622–627. doi: https://doi.org/10.1016/j.neuron.2016.10.033

  6. Vogelstein JT, Amunts K, Andreou A et al (2016) Grand challenges for global brain sciences. arXiv 2016:q-bio.NC

    Google Scholar 

  7. Calì C, Baghabra J, Boges DJ et al (2016) Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues. J Comp Neurol 524:23–38. https://doi.org/10.1002/cne.23852

    CAS  CrossRef  PubMed  Google Scholar 

  8. Agus M, Boges D, Gagnon N, Magistretti PJ, Hadwiger M, Calì C (2018) GLAM: Glycogen-derived Lactate Absorption Map for visual analysis of dense and sparse surface reconstructions of rodent brain structures on desktop systems and virtual environments. Comput Graph 74:85–98

    Google Scholar 

  9. Coggan JS, Calí C, Keller D et al (2018) A process for digitizing and simulating biologically realistic oligocellular networks demonstrated for the neuro-glio-vascular ensemble. Front Neurosci 12:664

    Google Scholar 

  10. Boges D, Calì C, Magistretti PJ, Hadwiger M, Sicat R, Agus M (2019) Virtual environment for processing medial axis representations of 3D nanoscale reconstructions of brain cellular structures. 25th ACM Symposium on Virtual Reality Software and Technology, 1–2

    Google Scholar 

  11. Rich L, Brown AM (2016) Glycogen: multiple roles in the CNS. Neuroscientist. https://doi.org/10.1177/1073858416672622

  12. Vezzoli E, Calì C, De Roo M et al (2019) Ultrastructural evidence for a role of astrocytes and glycogen-derived lactate in learning-dependent synaptic stabilization. Cereb Cortex 30(4):2114–2127. https://doi.org/10.1093/cercor/bhz226

  13. Beyer J, Al-Awami A, Kasthuri N et al (2013) ConnectomeExplorer: query-guided visual analysis of large volumetric neuroscience data. IEEE Trans Vis Comput Graph 19:2868–2877. https://doi.org/10.1109/TVCG.2013.142

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329. https://doi.org/10.1371/journal.pbio.0020329

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964. https://doi.org/10.1523/JNEUROSCI.3189-07.2008

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Hayworth KJ, Kasthuri N, Schalek R, Lichtman JW (2006) Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc Microanal 12:86–87. https://doi.org/10.1017/s1431927606066268

    CrossRef  Google Scholar 

  17. Titze B, Genoud C (2016) Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell 108:307–323. https://doi.org/10.1111/boc.201600024

    CAS  CrossRef  PubMed  Google Scholar 

  18. Seymour K-B, Mike R, Narayanan K et al (2013) Mojo 2.0: Connectome Annotation Tool. Front Neuroinform. https://doi.org/10.3389/conf.fninf.2013.09.00060

  19. Peng H, Hawrylycz M, Roskams J et al (2015) BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron 87:252–256. https://doi.org/10.1016/j.neuron.2015.06.036

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Calì C, Kare K, Agus M et al (2019) A method for 3D reconstruction and virtual reality analysis of glial and neuronal cells. J Vis Exp

    Google Scholar 

  21. Calì C, Agus M, Kare K, Boges DJ, Lehväslaiho H, Hadwiger M, Magistretti PJ (2019) 3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from Serial Block-Face Electron Microscopy of juvenile rat. Prog Neurobiol 183:101696. https://doi.org/10.1016/j.pneurobio.2019.101696. Epub 2019 Sep 21

  22. Liu T, Jones C, Seyedhosseini M, Tasdizen T (2014) A modular hierarchical approach to 3D electron microscopy image segmentation. J Neurosci Methods 226:88–102. https://doi.org/10.1016/j.jneumeth.2014.01.022

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Kaynig V, Vazquez-Reina A, Knowles-Barley S et al (2015) Large-scale automatic reconstruction of neuronal processes from electron microscopy images. Med Image Anal 22:77–88. https://doi.org/10.1016/j.media.2015.02.001

    CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Berning M, Boergens KM, Helmstaedter M (2015) SegEM: efficient image analysis for high-resolution connectomics. Neuron 87:1193–1206. https://doi.org/10.1016/j.neuron.2015.09.003

    CAS  CrossRef  PubMed  Google Scholar 

  25. Kasthuri N, Hayworth KJ, Berger DR et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661. https://doi.org/10.1016/j.cell.2015.06.054

    CAS  CrossRef  PubMed  Google Scholar 

  26. Templier T, Bektas K, Hahnloser RHR (2016) Eye-trace. Proceedings of the 2016 CHI conference on human factors in computing systems – CHI ‘16. https://doi.org/10.1145/2858036.2858578

  27. Scorcioni R, Polavaram S, Ascoli GA (2008) L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 3:866–876. https://doi.org/10.1038/nprot.2008.51

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Billeci L, Magliaro C, Pioggia G, Ahluwalia A (2013) NEuronMOrphological analysis tool: open-source software for quantitative morphometrics. Front Neuroinform 7:2. https://doi.org/10.3389/fninf.2013.00002

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Helmstaedter M, Briggman KL, Denk W (2011) High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci 14:1081–1088. https://doi.org/10.1038/nn.2868

    CAS  CrossRef  PubMed  Google Scholar 

  30. Cardona A, Saalfeld S, Schindelin J et al (2012) TrakEM2 software for neural circuit reconstruction. PLoS One 7:e38011. https://doi.org/10.1371/journal.pone.0038011

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Schneider-Mizell CM, Gerhard S, Longair M et al (2016) Quantitative neuroanatomy for connectomics in Drosophila. elife. https://doi.org/10.7554/eLife.12059

  32. Sommer C, Straehle C, Kothe U, Hamprecht FA (2011) Ilastik: Interactive learning and segmentation toolkit. 2011 IEEE international symposium on biomedical imaging: from nano to macro. https://doi.org/10.1109/isbi.2011.5872394

  33. Oe Y, Baba O, Ashida H et al (2016) Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns. Glia 64:1532–1545. https://doi.org/10.1002/glia.23020

    CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Asadulina A, Conzelmann M, Williams EA et al (2015) Object-based representation and analysis of light and electron microscopic volume data using Blender. BMC Bioinformatics 16:229. https://doi.org/10.1186/s12859-015-0652-7

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Aguiar P, Sousa M, Szucs P (2013) Versatile morphometric analysis and visualization of the three-dimensional structure of neurons. Neuroinformatics 11:393–403. https://doi.org/10.1007/s12021-013-9188-z

    CrossRef  PubMed  Google Scholar 

  36. Jorstad A, Nigro B, Cali C et al (2015) NeuroMorph: a toolset for the morphometric analysis and visualization of 3D models derived from electron microscopy image stacks. Neuroinformatics 13:83–92. https://doi.org/10.1007/s12021-014-9242-5

    CrossRef  PubMed  Google Scholar 

  37. Dercksen VJ, Hege H-C, Oberlaender M (2014) The filament editor: an interactive software environment for visualization, proof-editing and analysis of 3D neuron morphology. Neuroinformatics 12:325–339. https://doi.org/10.1007/s12021-013-9213-2

    CrossRef  PubMed  Google Scholar 

  38. Vandenberghe ME, Hérard A-S, Souedet N et al (2016) High-throughput 3D whole-brain quantitative histopathology in rodents. Sci Rep 6:20958. https://doi.org/10.1038/srep20958

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Holst G, Berg S, Kare K et al (2016) Adding large EM stack support. In: 4th Saudi International Conference on Information Technology (Big Data Analysis) (KACSTIT), Riyadh, Saudi Arabia, 2016, pp 1–7. https://doi.org/10.1109/KACSTIT.2016.7756066

    CrossRef  Google Scholar 

  40. Barnes SJ, Cheetham CE, Liu Y et al (2015) Delayed and temporally imprecise neurotransmission in reorganizing cortical microcircuits. J Neurosci 35:9024–9037. https://doi.org/10.1523/JNEUROSCI.4583-14.2015

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Foley JD et al (1997) Computer graphics: principles and practice, 2nd edn. Addison-Wesley Publishing, Reading, MA, pp 472–473

    Google Scholar 

  42. Totten C (2012) Game character creation with blender and unity. John Wiley & Sons, Hoboken, NJ, pp 10–13

    Google Scholar 

  43. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21:163–169. https://doi.org/10.1145/37402.37422

    CrossRef  Google Scholar 

  44. Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18:509–517. https://doi.org/10.1145/361002.361007

    CrossRef  Google Scholar 

  45. Maneewongvatana S, Mount DM (1999) It’s okay to be skinny, if your friends are fat. In: Center for geometric computing 4th annual workshop on computational geometry, pp 1–8

    Google Scholar 

  46. Jones E, Oliphant T, Peterson P, et al. (2015) SciPy: open source scientific tools for python, 2001. 73:86. http://www.scipy.org

  47. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  48. DeFreitas T, Saddiki H, Flaherty P (2016) GEMINI: a computationally-efficient search engine for large gene expression datasets. BMC Bioinformatics. https://doi.org/10.1186/s12859-016-0934-8

  49. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. KDD

    Google Scholar 

  50. Gan J, Tao Y (2015) DBSCAN revisited: mis-claim, un-fixability, and approximation. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, New York, NY, pp 519–530

    Google Scholar 

  51. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7

    CrossRef  Google Scholar 

  52. Lewis D (2014) The CAVE artists. Nat Med 20:228–230. https://doi.org/10.1038/nm0314-228

    CAS  CrossRef  PubMed  Google Scholar 

  53. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901

    CAS  CrossRef  Google Scholar 

  54. Balogh T, Zanetti G, Bouvier E et al (2006) An interactive multi-user holographic environment. ACM SIGGRAPH 2006 Emerging technologies on – SIGGRAPH ‘06. https://doi.org/10.1145/1179133.1179152

  55. Agus M, Gobbetti E, Guitiàn JAI et al (2008) GPU accelerated direct volume rendering on an interactive light field display. Comput Graph Forum 27:231–240. https://doi.org/10.1111/j.1467-8659.2008.01120.x

    CrossRef  Google Scholar 

  56. Marton F, Agus M, Gobbetti E et al (2012) Natural exploration of 3D massive models on large-scale light field displays using the FOX proximal navigation technique. Comput Graph 36:893–903. https://doi.org/10.1016/j.cag.2012.06.005

    CrossRef  Google Scholar 

  57. Calì C, Agus M, Gagnon N, Hadwiger M, Magistretti PJ (2017) Visual analysis of glycogen derived lactate absorption in dense and sparse surface reconstructions of rodent brain structures. Eurograph Assoc. https://doi.org/10.2312/stag.20171224

  58. Brooke J et al (1996) Sus—a quick and dirty usability scale. Usability evaluation. Industry 189(194):4–7

    Google Scholar 

  59. Salvatore L, Christina K (2008) Simple guidelines for testing vr applications. In: Advances in human computer interaction. InTech, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Calì .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Boges, D.J., Agus, M., Magistretti, P.J., Calì, C. (2020). Forget About Electron Micrographs: A Novel Guide for Using 3D Models for Quantitative Analysis of Dense Reconstructions. In: Wacker, I., Hummel, E., Burgold, S., Schröder, R. (eds) Volume Microscopy . Neuromethods, vol 155. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0691-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0691-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0690-2

  • Online ISBN: 978-1-0716-0691-9

  • eBook Packages: Springer Protocols