Skip to main content

Detection of CRISPR/Cas9-Generated Off-Target Effect by Integration-Defective Lentiviral Vector

  • Protocol
  • First Online:
CRISPR Guide RNA Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2162))

Abstract

Clustered regularly interspaced short palindromic repeat (CRISPR) and other gene editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) show great promises for research and therapeutic applications. One major concern is the off-target effects generated by these nucleases at unintended genomic sequences. In silico methods are usually used for off-target site prediction. However, based on currently available algorithms, the predicted cleavage activity at these potential off-target sites does not always reflect the true cleavage in vivo. Here we present an unbiased screening protocol using integration-defective lentiviral vector (IDLV) and deep sequencing to map the off-target sites generated by gene editing tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  Google Scholar 

  2. Hu JH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556(7699):57–63

    Article  CAS  Google Scholar 

  3. Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23(4):415–423

    Article  CAS  Google Scholar 

  4. Sheridan C (2018) Sangamo’s landmark genome editing trial gets mixed reception. Nat Biotechnol 36(10):907–908

    Article  CAS  Google Scholar 

  5. Hsu PD et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832

    Article  CAS  Google Scholar 

  6. Fu Y et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826

    Article  CAS  Google Scholar 

  7. Akcakaya P et al (2018) In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561(7723):416–419

    Article  CAS  Google Scholar 

  8. Pattanayak V et al (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8(9):765–770

    Article  CAS  Google Scholar 

  9. Pattanayak V et al (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843

    Article  CAS  Google Scholar 

  10. Gabriel R et al (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29(9):816–823

    Article  CAS  Google Scholar 

  11. Paruzynski A et al (2010) Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc 5(8):1379–1395

    Article  CAS  Google Scholar 

  12. Wang X et al (2015) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33(2):175–178

    Article  CAS  Google Scholar 

  13. Mochizuki H et al (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 72(11):8873–8883

    Article  CAS  Google Scholar 

  14. Yee JK et al (1994) A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A 91(20):9564–9568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant RB3-02161 from California Institute of Regenerative Medicine (J.K.Y.) and a grant from Nesvig Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiing-Kuan Yee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, X., Wu, Y., Yee, JK. (2021). Detection of CRISPR/Cas9-Generated Off-Target Effect by Integration-Defective Lentiviral Vector. In: Fulga, T.A., Knapp, D.J.H.F., Ferry, Q.R.V. (eds) CRISPR Guide RNA Design. Methods in Molecular Biology, vol 2162. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0687-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0687-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0686-5

  • Online ISBN: 978-1-0716-0687-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics