Skip to main content

Characterization of R-Loop Structures Using Single-Molecule R-Loop Footprinting and Sequencing

  • Protocol
  • First Online:
RNA-Chromatin Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2161))

Abstract

R-loops are three-stranded structures that form during transcription when the nascent RNA hybridizes with the template DNA resulting in a DNA:RNA hybrid and a looped-out single-stranded DNA (ssDNA) strand. These structures are important for normal cellular processes and aberrant R-loop formation has been implicated in a number of pathological outcomes, including certain cancers and neurodegenerative diseases. Mapping R-loops has primarily been performed using DRIP (DNA:RNA immunoprecipitation) based methods that are dependent on the anti-DNA:RNA hybrid S9.6 antibody and short-read sequencing. While DRIP-based methods are robust and report R-loop formation genome-wide, they only do so at the population average level; interrogating R-loop formation at the single molecule level is not feasible with such approaches. Here we present single molecule R-loop footprinting (SMRF-seq), a method that relies on the chemical reactivity of the displaced ssDNA strand to non-denaturing sodium bisulfite and single molecule long-read sequencing as a readout, to characterize R-loops. SMRF-seq can be used independently of S9.6 to generate high resolution, strand-specific, maps of individual R-loops at ultra-deep coverage on kilobases-length DNA fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45(6):814–825. https://doi.org/10.1016/j.molcel.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanz LA, Hartono SR, Lim YW, Steyaert S, Rajpurkar A, Ginno PA, Xu X, Chedin F (2016) Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol Cell 63(1):167–178. https://doi.org/10.1016/j.molcel.2016.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D (2016) S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 30(11):1327–1338. https://doi.org/10.1101/gad.280834.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. El Hage A, Webb S, Kerr A, Tollervey D (2014) Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet 10(10):e1004716. https://doi.org/10.1371/journal.pgen.1004716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hartono SR, Malapert A, Legros P, Bernard P, Chedin F, Vanoosthuyse V (2018) The affinity of the S9.6 antibody for double-stranded RNAs impacts the accurate mapping of R-loops in fission yeast. J Mol Biol 430(3):272–284. https://doi.org/10.1016/j.jmb.2017.12.016

    Article  CAS  PubMed  Google Scholar 

  6. Xu W, Xu H, Li K, Fan Y, Liu Y, Yang X, Sun Q (2017) The R-loop is a common chromatin feature of the Arabidopsis genome. Nat Plants 3(9):704–714. https://doi.org/10.1038/s41477-017-0004-x

    Article  CAS  PubMed  Google Scholar 

  7. Zaitsev EN, Kowalczykowski SC (2000) A novel pairing process promoted by Escherichia coli RecA protein: inverse DNA and RNA strand exchange. Genes Dev 14(6):740–749

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wahba L, Gore SK, Koshland D (2013) The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. elife 2:e00505. https://doi.org/10.7554/eLife.00505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kasahara M, Clikeman JA, Bates DB, Kogoma T (2000) RecA protein-dependent R-loop formation in vitro. Genes Dev 14(3):360–365

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chedin F (2016) Nascent connections: R-loops and chromatin patterning. Trends Genet 32(12):828–838. https://doi.org/10.1016/j.tig.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16(10):583–597. https://doi.org/10.1038/nrg3961

    Article  CAS  PubMed  Google Scholar 

  12. Costantino L, Koshland D (2015) The yin and Yang of R-loop biology. Curr Opin Cell Biol 34:39–45. https://doi.org/10.1016/j.ceb.2015.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crossley MP, Bocek M, Cimprich KA (2019) R-loops as cellular regulators and genomic threats. Mol Cell 73(3):398–411. https://doi.org/10.1016/j.molcel.2019.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Chen JY, Zhang X, Gu Y, Xiao R, Shao C, Tang P, Qian H, Luo D, Li H, Zhou Y, Zhang DE, Fu XD (2017) R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol Cell 68(4):745–757 . e745. https://doi.org/10.1016/j.molcel.2017.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen PB, Chen HV, Acharya D, Rando OJ, Fazzio TG (2015) R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat Struct Mol Biol 22(12):999–1007. https://doi.org/10.1038/nsmb.3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR (2003) R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4(5):442–451. https://doi.org/10.1038/ni919

    Article  CAS  PubMed  Google Scholar 

  17. Wiedemann EM, Peycheva M, Pavri R (2016) DNA replication origins in immunoglobulin switch regions regulate class switch recombination in an R-loop-dependent manner. Cell Rep 17(11):2927–2942. https://doi.org/10.1016/j.celrep.2016.11.041

    Article  CAS  PubMed  Google Scholar 

  18. Skourti-Stathaki K, Proudfoot NJ, Gromak N (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42(6):794–805. https://doi.org/10.1016/j.molcel.2011.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Proudfoot NJ (2016) Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352(6291):aad9926. https://doi.org/10.1126/science.aad9926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stork CT, Bocek M, Crossley MP, Sollier J, Sanz LA, Chedin F, Swigut T, Cimprich KA (2016) Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. Elife 5:e17548. https://doi.org/10.7554/eLife.17548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sollier J, Cimprich KA (2015) Breaking bad: R-loops and genome integrity. Trends Cell Biol 25(9):514–522. https://doi.org/10.1016/j.tcb.2015.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46(2):115–124. https://doi.org/10.1016/j.molcel.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  23. Richard P, Manley JL (2017) R loops and links to human disease. J Mol Biol 429(21):3168–3180. https://doi.org/10.1016/j.jmb.2016.08.031

    Article  CAS  PubMed  Google Scholar 

  24. Groh M, Gromak N (2014) Out of balance: R-loops in human disease. PLoS Genet 10(9):e1004630. https://doi.org/10.1371/journal.pgen.1004630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boguslawski SJ, Smith DE, Michalak MA, Mickelson KE, Yehle CO, Patterson WL, Carrico RJ (1986) Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids. J Immunol Methods 89(1):123–130

    Article  CAS  PubMed  Google Scholar 

  26. Phillips DD, Garboczi DN, Singh K, Hu Z, Leppla SH, Leysath CE (2013) The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6. J Mol Recognit 26(8):376–381. https://doi.org/10.1002/jmr.2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vanoosthuyse V (2018) Strengths and weaknesses of the current strategies to map and characterize R-loops. Noncoding RNA 4(2):E9. https://doi.org/10.3390/ncrna4020009

    Article  CAS  PubMed  Google Scholar 

  28. Malig M, Hartono SR, Giafaglione JM, Sanz LA, Chedin F (2019) High-Throughput Single-Molecule R-loop Footprinting Reveals Principles of R-loop Formation. bioRxiv:640094 https://doi.org/10.1101/640094

  29. Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276(6):1494–1505

    Article  CAS  PubMed  Google Scholar 

  30. Kouzine F, Wojtowicz D, Baranello L, Yamane A, Nelson S, Resch W, Kieffer-Kwon KR, Benham CJ, Casellas R, Przytycka TM, Levens D (2017) Permanganate/S1 nuclease Footprinting reveals non-B DNA structures with regulatory potential across a mammalian genome. Cell Syst 4(3):344–356.e347. https://doi.org/10.1016/j.cels.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  31. Sanz LA, Chedin F (2019) High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat Protoc 14(6):1734–1755. https://doi.org/10.1038/s41596-019-0159-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stolz R, Sulthana S, Hartono SR, Malig M, Benham CJ, Chedin F (2019) Interplay between DNA sequence and negative superhelicity drives R-loop structures. Proc Natl Acad Sci U S A 116(13):6260–6269. https://doi.org/10.1073/pnas.1819476116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carrasco-Salas Y, Malapert A, Sulthana S, Molcrette B, Chazot-Franguiadakis L, Bernard P, Chedin F, Faivre-Moskalenko C, Vanoosthuyse V (2019) The extruded non-template strand determines the architecture of R-loops. Nucleic Acids Res 47(13):6783–6795. https://doi.org/10.1093/nar/gkz341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Chedin lab members for useful discussions, Dr. Lionel A. Sanz for constructive comments on the manuscript, and Dr. Stella R. Hartono for developing the Gargamel analysis pipeline. This work was funded by the National Institutes of Health (Grant R01 GM120607 to F.C.) and was supported, in part, by National Science Foundation Graduate Research Fellowship (Grant 1650042 to M.M.) and National Institute of General Medical Sciences Biomolecular Technology Predoctoral T32 Training Program (Grant T32-GM008799 to M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Chedin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Malig, M., Chedin, F. (2020). Characterization of R-Loop Structures Using Single-Molecule R-Loop Footprinting and Sequencing. In: Ørom, U. (eds) RNA-Chromatin Interactions. Methods in Molecular Biology, vol 2161. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0680-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0680-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0679-7

  • Online ISBN: 978-1-0716-0680-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics