Skip to main content

Mapping Transcriptome-Wide and Genome-Wide RNA–DNA Contacts with Chromatin-Associated RNA Sequencing (ChAR-seq)

  • Protocol
  • First Online:
RNA-Chromatin Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2161))

Abstract

RNAs play key roles in the cell as molecular intermediates for protein synthesis and as regulators of nuclear processes such as splicing, posttranscriptional regulation, or chromatin remodeling. Various classes of non-coding RNAs, including long non-coding RNAs (lncRNAs), can bind chromatin either directly or via interaction with chromatin binding proteins. It has been proposed that lncRNAs regulate cell-state-specific genes by coordinating the locus-dependent activity of chromatin-modifying complexes. Yet, the vast majority of lncRNAs have unknown functions, and we know little about the specific loci they regulate. A key step toward understanding chromatin regulation by RNAs is to map the genomic loci with which every nuclear RNA interacts and, reciprocally, to identify all RNAs that target a given locus. Our ability to generate such data has been limited, until recently, by the lack of methods to probe the genomic localization of more than a few RNAs at a time. Here, we describe a protocol for ChAR-seq, an RNA–DNA proximity ligation method that maps the binding loci for thousands of RNAs at once and without the need for specific RNA or DNA probe sequences. The ChAR-seq approach generates chimeric RNA–DNA molecules in situ and then converts those chimeras to DNA for next-generation sequencing. Using ChAR-seq we detect many types of chromatin-associated RNA, both coding and non-coding. Understanding the RNA–DNA interactome and its changes during differentiation or disease with ChAR-seq will likely provide key insights into chromatin and RNA biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. https://doi.org/10.1038/nature11233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li X, Fu X-D (2019) Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat Rev Genet 20(9):503–519. https://doi.org/10.1038/s41576-019-0135-1

    Article  CAS  PubMed  Google Scholar 

  3. Engreitz JM, Pandya-Jones A, McDonel P et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147):1237973. https://doi.org/10.1126/science.1237973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science (80- ). Science 329(5992):689–693. https://doi.org/10.1126/science.1192002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Camacho OV, Galan C, Swist-Rosowska K et al (2017) Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. Elife. https://doi.org/10.7554/eLife.25293

  6. Maison C, Bailly D, Roche D et al (2011) SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin. Nat Genet 43:220–227. https://doi.org/10.1038/ng.765

    Article  CAS  PubMed  Google Scholar 

  7. Muchardt C, Guillemé M, Seeler JS et al (2002) Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep 3(10):975–981. https://doi.org/10.1093/embo-reports/kvf194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson WL, Yewdell WT, Bell JC et al (2017) RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. Elife. https://doi.org/10.7554/elife.25299

  9. Xiao R, Chen J-Y, Liang Z et al (2019) Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178:107–121. e18. https://doi.org/10.1016/j.cell.2019.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44(4):667–678. https://doi.org/10.1016/j.molcel.2011.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simon MD, Wang CI, Kharchenko PV et al (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci 108(51):20497–20502. https://doi.org/10.1073/pnas.1113536108

    Article  PubMed  Google Scholar 

  12. Engreitz J, Lander ES, Guttman M (2015) RNA antisense purification (RAP) for mapping RNA interactions with chromatin. Methods Mol Biol 1262:183–197. https://doi.org/10.1007/978-1-4939-2253-6_11

    Article  CAS  PubMed  Google Scholar 

  13. Kim T-K, Hemberg M, Gray JM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187. https://doi.org/10.1038/nature09033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rahman S, Zorca CE, Traboulsi T et al (2016) Single-cell profiling reveals that eRNA accumulation at enhancer-promoter loops is not required to sustain transcription. Nucleic Acids Res 45:3017–3030. https://doi.org/10.1093/nar/gkw1220

    Article  CAS  PubMed Central  Google Scholar 

  15. Li W, Notani D, Rosenfeld MG (2016) Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 17:207–223. https://doi.org/10.1038/nrg.2016.4

    Article  CAS  PubMed  Google Scholar 

  16. Jang HS, Shah NM, Du AY et al (2019) Transposable elements drive widespread expression of oncogenes in human cancers. Nat Genet 51(4):611–617

    Article  CAS  Google Scholar 

  17. Bell JC, Jukam D, Teran NA et al (2018) Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. elife 7:e27024. https://doi.org/10.7554/eLife.27024

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jukam D, Limouse C, Smith OK et al (2019) Chromatin-associated RNA sequencing (ChAR-seq). Curr Protoc Mol Biol 126:e87. https://doi.org/10.1002/cpmb.87

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Zhou B, Chen L et al (2017) GRID-seq reveals the global RNA-chromatin interactome. Nat Biotechnol 35(10):940–950. https://doi.org/10.1038/nbt.3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sridhar B, Rivas-Astroza M, Nguyen TC et al (2017) Systematic mapping of RNA-chromatin interactions in vivo. Curr Biol 27(4):602–609. https://doi.org/10.1016/j.cub.2017.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bonetti A, Agostini F, Suzuki AM, et al (2019) RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions bioRxiv 681924. https://doi.org/10.1101/681924

  22. Viollet S, Fuchs RT, Munafo DB et al (2011) T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis. BMC Biotechnol 11:72. https://doi.org/10.1186/1472-6750-11-72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Straight Lab for feedback and discussion. We also thank Arion Fortsch and Viviana Risca for help with the human cell line protocol. This work was supported by the Training Grant NIH T32-GM113854-02 and NSF-GRFP to OKS, Training Grant NIH T32-GM007790-40 for KAF, Stanford Center for Systems Biology Seed Grant Award (NIH P50 GM107615 to James E. Ferrell) to DJ, and by NIH R01 HG009909 to AFS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles Limouse or Aaron F. Straight .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Table 1

ChAR-seq buffers and reaction mixes worksheet (XLSX 25 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Limouse, C., Jukam, D., Smith, O.K., Fryer, K.A., Straight, A.F. (2020). Mapping Transcriptome-Wide and Genome-Wide RNA–DNA Contacts with Chromatin-Associated RNA Sequencing (ChAR-seq). In: Ørom, U. (eds) RNA-Chromatin Interactions. Methods in Molecular Biology, vol 2161. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0680-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0680-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0679-7

  • Online ISBN: 978-1-0716-0680-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics