Skip to main content

Flow Chamber Assay to Image the Response of FRET-Based Nanosensors in Pollen Tubes to Changes in Medium Composition

  • Protocol
  • First Online:
Pollen and Pollen Tube Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2160))

  • 999 Accesses

Abstract

Pollen tubes growing in the transmitting tract are presented with an extracellular matrix rich in a variety of substances. The expression of a multitude of genes for transport proteins in the pollen tube indicates that pollen tubes take up at least some of the components provided by the transmitting tract, for example nutrients, ions, or signaling molecules. FRET (Förster resonance energy transfer)-based nanosensors are perfectly suited to study the uptake of these molecules into pollen tubes. They are genetically encoded and can easily be expressed in Arabidopsis pollen tubes. Furthermore, the method is noninvasive and nanosensors for a wide range of substances are available. This chapter will describe the design of plasmids required to generate stable Arabidopsis lines with a pollen tube-specific expression of nanosensor constructs. We also present a method to germinate Arabidopsis pollen tubes in a flow chamber slide that allows the perfusion of the pollen tubes with liquid medium supplemented with the substrate of the nanosensor. Simultaneous evaluation of the FRET efficiency of the nanosensor by confocal microscopy reveals whether the substance is taken up by the pollen tubes. Together with the great number of available nanosensors this method can generate a detailed picture of the substances that are taken up during pollen tubes growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheung AY, Wang H, Wu H (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    Article  CAS  PubMed  Google Scholar 

  2. Johnson MA, Preuss D (2002) Plotting a course: Multiple signals guide pollen tubes to their targets. Dev Cell 2:273–281

    Article  CAS  PubMed  Google Scholar 

  3. Pina C, Pinto F, Feijó JA et al (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Zhang W-Z, Song L-F et al (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tavares B, Domingos P, Dias PN et al (2011) The essential role of anionic transport in plant cells: the pollen tube as a case study. J Exp Bot 62:2273–2298

    Article  CAS  PubMed  Google Scholar 

  6. Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  7. Dittmer PJ, Miranda JG, Gorski JA et al (2009) Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J Biol Chem 284:16289–16297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindenburg LH, Vinkenborg JL, Oortwijn J et al (2013) MagFRET: the first genetically encoded fluorescent Mg2+ sensor. PLoS One 8:e82009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Markova O, Mukhtarov M, Real E et al (2008) Genetically encoded chloride indicator with improved sensitivity. J Neurosci Methods 170:67–76

    Article  CAS  PubMed  Google Scholar 

  10. Kuner T, Augustine GJ (2000) A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27:447–459

    Article  CAS  PubMed  Google Scholar 

  11. Gu Z, Zhao M, Sheng Y et al (2011) Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal Chem 83:2324–2329

    Article  CAS  PubMed  Google Scholar 

  12. Wegner SV, Sun F, Hernandez N et al (2011) The tightly regulated copper window in yeast. Chem Commun 47:2571–2573

    Article  CAS  Google Scholar 

  13. Vinkenborg JL, van Duijnhoven SMJ, Merkx M (2011) Reengineering of a fluorescent zinc sensor protein yields the first genetically encoded cadmium probe. Chem Commun 47:11879–11881

    Article  CAS  Google Scholar 

  14. Gu H, Lalonde S, Okumoto S et al (2006) A novel analytical method for in vivo phosphate tracking. FEBS Lett 580:5885–5893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohsin M, Abdin MZ, Nischal L et al (2013) Genetically encoded FRET-based nanosensor for in vivo measurement of leucine. Biosens Bioelectron 50:72–77

    Article  CAS  PubMed  Google Scholar 

  16. Mohsin M, Ahmad A (2014) Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Biosens Bioelectron 59:358–364

    Article  CAS  PubMed  Google Scholar 

  17. Ameen S, Ahmad M, Mohsin M et al (2016) Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells. J Nanobiotechnol 14:49

    Article  CAS  Google Scholar 

  18. Deuschle K, Okumoto S, Fehr M et al (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okada S, Ota K, Ito T (2009) Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor. Protein Sci 18:2518–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu H, Gu Y, Xu L et al (2017) A genetically encoded toolkit for tracking live-cell histidine dynamics in space and time. Sci Rep 7:43479

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deuschle K, Chaudhuri B, Okumoto S et al (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18:2314–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lager I, Looger LL, Hilpert M et al (2006) Conversion of a putative Agrobacterium sugar-binding protein into a FRET sensor with high selectivity for sucrose. J Biol Chem 281:30875–30883

    Article  CAS  PubMed  Google Scholar 

  23. Kaper T, Lager I, Looger LL et al (2008) Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnol Biofuels 1:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lager I, Fehr M, Frommer WB et al (2003) Development of a fluorescent nanosensor for ribose. FEBS Lett 553:85–89

    Article  CAS  PubMed  Google Scholar 

  25. Waadt R, Hitomi K, Nishimura N et al (2014) FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. elife 3:e01739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jones AM, Danielson JĂ…, ManojKumar SN et al (2014) Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. elife 3:e01741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Rizza A, Walia A, Lanquar V et al (2017) In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat Plant 3:803–813

    Article  CAS  Google Scholar 

  28. Imamura H, Huynh Nhat KP, Togawa H et al (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci 106:15651–15656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lerchundi R, Kafitz KW, Winkler U et al (2018) FRET-based imaging of intracellular ATP in organotypic brain slices. J Neurosci Res 97:933–945

    Article  PubMed  CAS  Google Scholar 

  30. Nikolaev VO, Bünemann M, Hein L et al (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  CAS  PubMed  Google Scholar 

  31. Hung YP, Albeck JG, Tantama M et al (2011) Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pearce LL, Gandley RE, Han W et al (2000) Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc Natl Acad Sci 97:477–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nishioka T, Aoki K, Hikake K et al (2008) Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells. Mol Biol Cell 19:4213–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshizaki H, Aoki K, Nakamura T et al (2006) Regulation of RalA GTPase by phosphatidylinositol 3-kinase as visualized by FRET probes. Biochem Soc Trans 34:851–854

    Article  CAS  PubMed  Google Scholar 

  35. Ahmad M, Mohsin M, Iqrar S et al (2018) Live cell imaging of vitamin B12 dynamics by genetically encoded fluorescent nanosensor. Sensors Actuators B Chem 257:866–874

    Article  CAS  Google Scholar 

  36. San MartĂ­n A, Ceballo S, Ruminot I et al (2013) A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One 8:e57712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ewald JC, Reich S, Baumann S et al (2011) Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations. PLoS One 6:e28245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soleja N, Manzoor O, Nandal P et al (2019) FRET-based nanosensors for monitoring and quantification of alcohols in living cells. Org Biomol Chem 17:2413–2422

    Article  CAS  PubMed  Google Scholar 

  39. Chaudhuri B, Hörmann F, Lalonde S et al (2008) Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. Plant J 56:948–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lanquar V, Grossmann G, Vinkenborg JL et al (2014) Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology. New Phytol 202:198–208

    Article  CAS  PubMed  Google Scholar 

  41. Allen GJ, Kwak JM, Chu SP et al (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19:735–747

    Article  CAS  PubMed  Google Scholar 

  42. Mukherjee P, Banerjee S, Wheeler A et al (2015) Live imaging of inorganic phosphate in plants with cellular and subcellular resolution. Plant Physiol 167:628–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Michard E, Dias P, Feijó JA (2008) Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using pHluorin and YC3.1 CaMeleon. Sex Plant Reprod 21:169–181

    Article  CAS  Google Scholar 

  44. Rottmann T, Fritz C, Sauer N et al (2018) Glucose uptake via STP transporters inhibits in vitro pollen tube growth in a HEXOKINASE1-dependent manner in Arabidopsis thaliana. Plant Cell 30:2057–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodriguez-Enriquez MJ, Mehdi S, Dickinson HG et al (2013) A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytol 197:1–12

    Article  Google Scholar 

  46. Clough SJ, Bent AF (1999) Floral dip : a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  Google Scholar 

  47. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wouters F, Verveer P, Bastiaens P (2001) Imaging biochemistry inside cells. Trends Cell Biol 11:203–211

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa Maria Reimann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reimann, T.M. (2020). Flow Chamber Assay to Image the Response of FRET-Based Nanosensors in Pollen Tubes to Changes in Medium Composition. In: Geitmann, A. (eds) Pollen and Pollen Tube Biology. Methods in Molecular Biology, vol 2160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0672-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0672-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0671-1

  • Online ISBN: 978-1-0716-0672-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics