Skip to main content

Silicone Chambers for Pollen Tube Imaging in Microstructured In Vitro Environments

Part of the Methods in Molecular Biology book series (MIMB,volume 2160)

Abstract

Live cell imaging at high resolution of pollen tubes growing in vitro requires an experimental setup that maintains the elongated cells in a single optical plane and allows for controlled exchange of growth medium. As a low-cost alternative to lithography-based microfluidics, we developed a silicone-based spacer system that allows introducing spatial features and flexible design. These growth chambers can be cleaned and reused repeatedly.

Key words

  • Live cell imaging
  • Fluorescence imaging
  • Micromanipulation
  • Silicone chambers

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0672-8_15
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0672-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rakusova H, Geitmann A (2017) Control of cellular morphogenesis through intracellular trafficking. In: Obermeyer G, Feijó J (eds) Pollen tube tip growth: from biophysical aspects to systems biology. Springer, New York, NY, pp 129–148

    CrossRef  Google Scholar 

  2. Chebli Y, Kroeger J, Geitmann A (2013) Transport logistics in pollen tubes. Mol Plant 6:1037–1052

    CAS  CrossRef  Google Scholar 

  3. Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    CAS  CrossRef  Google Scholar 

  4. Li HJ, Meng JG, Yang WC (2018) Multilayered signaling pathways for pollen tube growth and guidance. Plant Reprod 31:31–41

    CAS  CrossRef  Google Scholar 

  5. Chebli Y, Geitmann A (2015) Live cell and immuno-labeling techniques to study gravitational effects on single plant cells. In: Blancaflor E (ed) Plant gravitropism, Methods in molecular biology. Humana, New York, NY, pp 209–226

    CrossRef  Google Scholar 

  6. Agudelo CG, Packirisamy M, Geitmann A (2016) Influence of electric fields and conductivity on pollen tube growth assessed via electrical lab-on-chip. Sci Rep 6:19812

    CAS  CrossRef  Google Scholar 

  7. Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A (2013) TipChip – a modular, MEMS (microelectromechanical systems)-based platform for experimentation and phenotyping of tip growing cells. Plant J 73:1057–1068

    CAS  CrossRef  Google Scholar 

  8. Agudelo CG, Packirisamy M, Geitmann A (2013) Lab-on-a-chip for studying growing pollen tubes. In: Žárský V, Cvrčková F (eds) Plant cell morphogenesis: methods and protocols, Methods in molecular biology. Springer, New York, NY, pp 237–248

    Google Scholar 

  9. Agudelo CG, Sanati Nezhad A, Ghanbari M, Packirisamy M, Geitmann A (2012) A microfluidic platform for the investigation of elongation growth in pollen tubes. J Micromech Microeng 22:115009

    CrossRef  Google Scholar 

  10. Geitmann A (2017) Microfluidics and MEMS (microelectromechanical systems)-based platforms for experimental analysis of pollen tube growth behavior and quantification of cell mechanical properties. In: Obermeyer G, Feijó J (eds) Pollen tube tip growth: from biophysical aspects to systems biology. Springer, New York, NY, pp 87–103

    CrossRef  Google Scholar 

  11. Ghanbari M, Sanati Nezhad A, Agudelo CG, Packirisamy M, Geitmann A (2014) Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis. J Biosci Bioeng 117:504–511

    CAS  CrossRef  Google Scholar 

  12. Sanati Nezhad A, Packirisamy M, Geitmann A (2014) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195

    CAS  CrossRef  Google Scholar 

  13. Sanati Nezhad A, Ghanbari M, Agudelo CG, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2014) Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis. Biomed Microdevices 16:23–33

    CrossRef  Google Scholar 

  14. Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013) Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. PNAS 110:8093–8098

    CrossRef  Google Scholar 

  15. Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013) Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab Chip 13:2599–2608

    CrossRef  Google Scholar 

  16. Sanati Nezhad A, Ghanbari M, Agudelo CG, Packirisamy M, Bhat RB, Geitmann A (2012) PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sensors J 13:601–609

    CrossRef  Google Scholar 

  17. Yanagisawa N, Higashiyama T (2018) Quantitative assessment of chemotropism in pollen tubes using microslit channel filters. Biomicrofluidics 12:024113

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Geitmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Bertrand-Rakusová, H., Chebli, Y., Geitmann, A. (2020). Silicone Chambers for Pollen Tube Imaging in Microstructured In Vitro Environments. In: Geitmann, A. (eds) Pollen and Pollen Tube Biology. Methods in Molecular Biology, vol 2160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0672-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0672-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0671-1

  • Online ISBN: 978-1-0716-0672-8

  • eBook Packages: Springer Protocols