Skip to main content

Galvanotropic Chamber for Controlled Reorientation of Pollen Tube Growth and Simultaneous Confocal Imaging of Intracellular Dynamics

Part of the Methods in Molecular Biology book series (MIMB,volume 2160)

Abstract

Successful fertilization and seed set require the pollen tube to grow through several tissues, to change its growth orientation by responding to directional cues, and to ultimately reach the embryo sac and deliver the paternal genetic material. The ability to respond to external directional cues is, therefore, a pivotal feature of pollen tube behavior. In order to study the regulatory mechanisms controlling and mediating pollen tube tropic growth, a robust and reproducible method for the induction of growth reorientation in vitro is required. Here we describe a galvanotropic chamber designed to expose growing pollen tubes to precisely calibrated directional cues triggering reorientation while simultaneously tracking subcellular processes using live cell imaging and confocal laser scanning microscopy.

Key words

  • Directional cues
  • Galvanotropism
  • Galvanotropic chamber
  • Guided growth
  • Pollen tube
  • Tropic growth

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0672-8_13
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0672-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cheung AY, Wu H-M (2001) Pollen tube guidance—right on target. Science 293:1441–1442

    CAS  CrossRef  Google Scholar 

  2. Geitmann A, Palanivelu R (2007) Fertilization requires communication: signal generation and perception during pollen tube guidance. Floriculture and Ornamental Biotechnol 1:77–89

    Google Scholar 

  3. Cheung AY, Wang H, Wu H-M (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    CAS  CrossRef  Google Scholar 

  4. Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    CAS  CrossRef  Google Scholar 

  5. Higashiyama T, Kuroiwa H, Kuroiwa T (2003) Pollen-tube guidance: beacons from the female gametophyte. Curr Opin Plant Biol 6:36–41

    CrossRef  Google Scholar 

  6. Tung C-W, Dwyer KG, Nasrallah ME, Nasrallah JB (2005) Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol 138:977–989

    CAS  CrossRef  Google Scholar 

  7. Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7

    CrossRef  Google Scholar 

  8. Prado AM, Porterfield DM, Feijó JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714

    CAS  CrossRef  Google Scholar 

  9. Márton ML, Fastner A, Uebler S, Dresselhaus T (2012) Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Biol 22:1194–1198

    CrossRef  Google Scholar 

  10. Márton ML, Dresselhaus T (2010) Female gametophyte-controlled pollen tube guidance. Biochem Soc Trans 38:627–630

    CrossRef  Google Scholar 

  11. Márton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576

    CrossRef  Google Scholar 

  12. Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357

    CAS  CrossRef  Google Scholar 

  13. Takeuchi H, Higashiyama T (2012) A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10:e1001449

    CAS  CrossRef  Google Scholar 

  14. Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:17–26

    CrossRef  Google Scholar 

  15. Bou Daher F, Geitmann A (2011) Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12:1537–1551

    CrossRef  Google Scholar 

  16. Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245

    CAS  CrossRef  Google Scholar 

  17. Wang T, Liang L, Xue Y, Jia P-F, Chen W, Zhang M-X, Wang Y-C, Li H-J, Yang W-C (2016) A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241

    CAS  CrossRef  Google Scholar 

  18. Zhang X, Liu W, Nagae TT, Takeuchi H, Zhang H, Han Z, Higashiyama T, Chai J (2017) Structural basis for receptor recognition of pollen tube attraction peptides. Nat Commun 8:1331

    CrossRef  Google Scholar 

  19. Luo N, Yan A, Liu G, Guo J, Rong D, Kanaoka MM, Xiao Z, Xu G, Higashiyama T, Cui X, Yang Z (2017) Exocytosis-coordinated mechanisms for tip growth underlie pollen tube growth guidance. Nat Commun 8:1687

    CrossRef  Google Scholar 

  20. Qu X, Zhang R, Zhang M, Diao M, Xue Y, Huang S (2017) Organizational Innovation of apical actin filaments drives rapid pollen tube growth and turning. Mol Plant 10:930–947

    CAS  CrossRef  Google Scholar 

  21. Malhó R, Read ND, Pais MS, Trewavas AJ (1994) Role of cytosolic free calcium in the reorientation of pollen tube growth. Plant J 5:331–341

    CrossRef  Google Scholar 

  22. Malhó R, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–1949

    CrossRef  Google Scholar 

  23. Sanati Nezhad A, Packirisamy M, Geitmann A (2014) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195

    CAS  CrossRef  Google Scholar 

  24. Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A (2013) TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J 73:1057–1068

    CAS  CrossRef  Google Scholar 

  25. Malhó R, Feijó JA, Pais MSS (1992) Effect of electrical fields and external ionic currents on pollen-tube orientation. Sex Plant Reprod 5:57–63

    CrossRef  Google Scholar 

  26. Wang C, Rathore KS, Robinson KR (1989) The responses of pollen to applied electrical fields. Dev Biol 136:405–410

    CAS  CrossRef  Google Scholar 

  27. Nakamura N, Fukushima A, Iwayama H, Suzuki H (1991) Electrotropism of pollen tubes of camellia and other plants. Sex Plant Reprod 4:138–143

    CrossRef  Google Scholar 

  28. Agudelo C, Packirisamy M, Geitmann A (2016) Influence of electric fields and conductivity on pollen tube growth assessed via electrical lab-on-chip. Sci Rep 6:19812

    CAS  CrossRef  Google Scholar 

  29. Bou Daher F, Chebli Y, Geitmann A (2009) Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen. Plant Cell Rep 28:347–357

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Geitmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Bou Daher, F., Geitmann, A. (2020). Galvanotropic Chamber for Controlled Reorientation of Pollen Tube Growth and Simultaneous Confocal Imaging of Intracellular Dynamics. In: Geitmann, A. (eds) Pollen and Pollen Tube Biology. Methods in Molecular Biology, vol 2160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0672-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0672-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0671-1

  • Online ISBN: 978-1-0716-0672-8

  • eBook Packages: Springer Protocols