Skip to main content

In Vitro Synthesis of Modified RNA for Cardiac Gene Therapy

Part of the Methods in Molecular Biology book series (MIMB,volume 2158)

Abstract

Modified mRNA (modRNA) is a promising new gene therapy approach that has safely and effectively delivered genes into different tissues, including the heart. Current efforts to use DNA-based or viral gene therapy to induce cardiac regeneration postmyocardial infarction (MI) or in heart failure (HF) have encountered key challenges, e.g., genome integration and delayed and noncontrolled expression. By contrast, modRNA is a transient, safe, non-immunogenic, and controlled gene delivery method that is not integrated into the genome. For most therapeutic applications, especially in regenerative medicine, the ability to deliver genes to the heart transiently and with control is vital for achieving therapeutic effect. Additionally, modRNA synthesis is comparatively simple and inexpensive compared to other gene delivery methods (e.g., protein), though a simple, clear in vitro transcription (IVT) protocol for synthesizing modRNA is needed for it to be more widely used. Here, we describe a simple and improved step-by-step IVT protocol to synthesize modRNA for in vitro or in vivo applications.

Key words

  • Modified mRNA
  • Gene therapy
  • mRNA stability
  • mRNA translation
  • Myocardial infarction

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0668-1_21
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0668-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Go AS et al (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292

    PubMed  Google Scholar 

  2. Dargie H (2005) Heart failure post-myocardial infarction: a review of the issues. Heart 91(Suppl 2):ii3–ii6. discussion ii31, ii43-8

    PubMed  PubMed Central  Google Scholar 

  3. Magadum A, Kaur K, Zangi L (2019) mRNA-based protein replacement therapy for the heart. Mol Ther 27(4):785–793

    CrossRef  CAS  Google Scholar 

  4. Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov 13(10):759–780

    CrossRef  CAS  Google Scholar 

  5. McIvor RS (2011) Therapeutic delivery of mRNA: the medium is the message. Mol Ther 19(5):822–823

    CrossRef  CAS  Google Scholar 

  6. Kariko K et al (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16(11):1833–1840

    CrossRef  CAS  Google Scholar 

  7. Zangi L et al (2013) Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 31(10):898–907

    CrossRef  CAS  Google Scholar 

  8. Magadum A et al (2018) Ablation of a single N-glycosylation site in human FSTL 1 induces cardiomyocyte proliferation and cardiac regeneration. Mol Ther Nucleic Acids 13:133–143

    CrossRef  CAS  Google Scholar 

  9. Sultana N et al (2017) Optimizing cardiac delivery of modified mRNA. Mol Ther 25(6):1306–1315

    CrossRef  CAS  Google Scholar 

  10. Heiser A et al (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109(3):409–417

    CrossRef  CAS  Google Scholar 

  11. Morse MA et al (2002) The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int J Gastrointest Cancer 32(1):1–6

    CrossRef  CAS  Google Scholar 

  12. Morse MA et al (2003) Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Investig 21(3):341–349

    CrossRef  CAS  Google Scholar 

  13. Rittig SM et al (2011) Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 19(5):990–999

    CrossRef  CAS  Google Scholar 

  14. Su Z et al (2005) Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 174(6):3798–3807

    CrossRef  CAS  Google Scholar 

  15. Weide B et al (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32(5):498–507

    CrossRef  CAS  Google Scholar 

  16. Wilgenhof S et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24(10):2686–2693

    CrossRef  CAS  Google Scholar 

  17. Creusot RJ et al (2010) A short pulse of IL-4 delivered by DCs electroporated with modified mRNA can both prevent and treat autoimmune diabetes in NOD mice. Mol Ther 18(12):2112–2120

    CrossRef  CAS  Google Scholar 

  18. Mitchell DA et al (2008) Selective modification of antigen-specific T cells by RNA electroporation. Hum Gene Ther 19(5):511–521

    CrossRef  CAS  Google Scholar 

  19. Okumura K et al (2008) Bax mRNA therapy using cationic liposomes for human malignant melanoma. J Gene Med 10(8):910–917

    CrossRef  CAS  Google Scholar 

  20. Wang Y et al (2013) Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther 21(2):358–367

    CrossRef  CAS  Google Scholar 

  21. Kariko K et al (2012) Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 20(5):948–953

    CrossRef  CAS  Google Scholar 

  22. Kormann MS et al (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29(2):154–157

    CrossRef  CAS  Google Scholar 

  23. Mays LE et al (2013) Modified Foxp3 mRNA protects against asthma through an IL-10-dependent mechanism. J Clin Invest 123(3):1216–1228

    CrossRef  CAS  Google Scholar 

  24. Zimmermann O et al (2012) Successful use of mRNA-nucleofection for overexpression of interleukin-10 in murine monocytes/macrophages for anti-inflammatory therapy in a murine model of autoimmune myocarditis. J Am Heart Assoc 1(6):e003293

    CrossRef  Google Scholar 

  25. Kondrat J, Sultana N, Zangi L (2017) Synthesis of modified mRNA for myocardial delivery. Methods Mol Biol 1521:127–138

    CrossRef  Google Scholar 

Download references

Acknowledgments

We thank Nadia Hossain for her assistance. This work was funded in part by a seed package from the Icahn School of Medicine at Mount Sinai. Nishat Sultana and Mohammad Tofael Kabir Sharkar contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lior Zangi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Sultana, N., Sharkar, M.T.K., Hadas, Y., Chepurko, E., Zangi, L. (2021). In Vitro Synthesis of Modified RNA for Cardiac Gene Therapy. In: Poss, K.D., Kühn, B. (eds) Cardiac Regeneration. Methods in Molecular Biology, vol 2158. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0668-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0668-1_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0667-4

  • Online ISBN: 978-1-0716-0668-1

  • eBook Packages: Springer Protocols