Skip to main content

Apical Resection and Cryoinjury of Neonatal Mouse Heart

  • Protocol
  • First Online:
Cardiac Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2158))

Abstract

Neonatal mouse hearts have a regenerative capacity similar to adult zebrafish. Different cardiac injury models have been established to investigate the regenerative capacity of neonatal mouse hearts, including ventricular amputation, cryoinjury, and ligation of a major coronary artery. While the ventricular resection model can be utilized to study how tissue forms and regenerates de novo, cryoinjury and coronary artery ligation are methods that might better mimic myocardial infarction by creating tissue damage and necrosis as opposed to the removal of healthy tissue in the ventricular amputation model. Here we describe methods of creating ventricular resection and cardiac cryoinjury in newborn mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190

    Article  CAS  Google Scholar 

  2. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080. https://doi.org/10.1126/science.1200708. 331/6020/1078 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, Udi Y, Sarig R, Sagi I, Martin JF, Bursac N, Cohen S, Tzahor E (2017) The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547(7662):179–184. https://doi.org/10.1038/nature22978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han C, Nie Y, Lian H, Liu R, He F, Huang H, Hu S (2015) Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res 25(10):1137–1151. https://doi.org/10.1038/cr.2015.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morikawa Y, Heallen T, Leach J, Xiao Y, Martin JF (2017) Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature 547(7662):227–231. https://doi.org/10.1038/nature22979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morikawa Y, Zhang M, Heallen T, Leach J, Tao G, Xiao Y, Bai Y, Li W, Willerson JT, Martin JF (2015) Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci Signal 8(375):ra41. https://doi.org/10.1126/scisignal.2005781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tao G, Kahr PC, Morikawa Y, Zhang M, Rahmani M, Heallen TR, Li L, Sun Z, Olson EN, Amendt BA, Martin JF (2016) Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature 534(7605):119–123. https://doi.org/10.1038/nature17959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, Nie Y, Hu S, Lin Z, Zhou B, Pu W, Lui KO, Zhou B (2016) GATA4 regulates Fgf16 to promote heart repair after injury. Development 143(6):936–949. https://doi.org/10.1242/dev.130971

    Article  CAS  PubMed  Google Scholar 

  9. Andersen DC, Ganesalingam S, Jensen CH, Sheikh SP (2014) Do neonatal mouse hearts regenerate following heart apex resection? Stem Cell Rep 2(4):406–413. https://doi.org/10.1016/j.stemcr.2014.02.008

    Article  CAS  Google Scholar 

  10. Sampaio-Pinto V, Rodrigues SC, Laundos TL, Silva ED, Vasques-Novoa F, Silva AC, Cerqueira RJ, Resende TP, Pianca N, Leite-Moreira A, D’Uva G, Thorsteinsdottir S, Pinto-do OP, Nascimento DS (2018) Neonatal apex resection triggers cardiomyocyte proliferation, neovascularization and functional recovery despite local fibrosis. Stem Cell Rep 10(3):860–874. https://doi.org/10.1016/j.stemcr.2018.01.042

    Article  Google Scholar 

  11. Bryant DM, O’Meara CC, Ho NN, Gannon J, Cai L, Lee RT (2015) A systematic analysis of neonatal mouse heart regeneration after apical resection. J Mol Cell Cardiol 79:315–318. https://doi.org/10.1016/j.yjmcc.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  12. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124(3):1382–1392. https://doi.org/10.1172/JCI72181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gamba L, Harrison M, Lien CL (2014) Cardiac regeneration in model organisms. Curr Treat Options Cardiovasc Med 16(3):288. https://doi.org/10.1007/s11936-013-0288-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rubin N, Harrison MR, Krainock M, Kim R, Lien CL (2016) Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice. Semin Cell Dev Biol 58:34–40. https://doi.org/10.1016/j.semcdb.2016.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chablais F, Jazwinska A (2010) IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 137(6):871–879. https://doi.org/10.1242/dev.043885. 137/6/871 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez-Rosa JM, Martin V, Peralta M, Torres M, Mercader N (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138(9):1663–1674. https://doi.org/10.1242/dev.060897. dev.060897 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Schnabel K, Wu CC, Kurth T, Weidinger G (2011) Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 6(4):e18503. https://doi.org/10.1371/journal.pone.0018503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darehzereshki A, Rubin N, Gamba L, Kim J, Fraser J, Huang Y, Billings J, Mohammadzadeh R, Wood J, Warburton D, Kaartinen V, Lien CL (2015) Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol 399(1):91–99. https://doi.org/10.1016/j.ydbio.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  19. Shen H, Gan P, Wang K, Darehzereshki A, Wang K, Kumar SR, Lien CL, Patterson M, Tao G, Sucov HM (2020) Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling. Elife. 13(9):e53071. https://doi.org/10.7554/eLife.53071 [pii]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Ling Lien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shen, H., Darehzereshki, A., Sucov, H.M., Lien, CL. (2021). Apical Resection and Cryoinjury of Neonatal Mouse Heart. In: Poss, K.D., Kühn, B. (eds) Cardiac Regeneration. Methods in Molecular Biology, vol 2158. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0668-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0668-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0667-4

  • Online ISBN: 978-1-0716-0668-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics