Skip to main content

Identification of Long Noncoding RNA by In Situ Hybridization Approaches

  • Protocol
  • First Online:
Molecular Dermatology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2154))

Abstract

In situ hybridization (ISH) and fluorescence in situ hybridization (FISH) techniques enable us to detect the expression of a specific RNA in fixed cells or tissue sections. Here, we describe in detail two procedures adjusted to reveal specifically lncRNAs in normal human keratinocytes and in skin tissue samples. Examples of the results obtained by the two different approaches are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB (2010) Annotating non-coding regions of the genome. Nat Rev Genet 11:559–571

    CAS  PubMed  Google Scholar 

  2. The ENCODE Project Consortium, Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    PubMed Central  Google Scholar 

  3. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    CAS  PubMed  Google Scholar 

  5. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    CAS  PubMed  Google Scholar 

  6. Wassarman D, Steitz J (1992) Interactions of small nuclear RNA’s with precursor messenger RNA during in vitro splicing. Science 257:1918–1925

    CAS  PubMed  Google Scholar 

  7. Tollervey D, Kiss T (1997) Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol 9:337–342

    CAS  PubMed  Google Scholar 

  8. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15:R17–R29

    CAS  PubMed  Google Scholar 

  9. Anastasiadou E, Jacob LS, Slack FJ (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18:5–18

    CAS  PubMed  Google Scholar 

  10. Chandra Gupta S, Nandan Tripathi Y (2017) Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer 140:1955–1967

    CAS  PubMed  Google Scholar 

  11. Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, Croce N, Vandesompele J, Mestdagh P, Finazzi-Agrò E et al (2013) DNA methylation silences miR-132 in prostate cancer. Oncogene 32:127–134

    CAS  PubMed  Google Scholar 

  12. Formosa A, Markert EK, Lena AM, Italiano D, Finazzi-Agro’ E, Levine AJ, Bernardini S, Garabadgiu AV, Melino G, Candi E (2013) MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 33:5173–5182

    PubMed  Google Scholar 

  13. Amelio I, Lena AM, Viticchiè G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D, Russo G, Fortunato C, Bonanno E, Spagnoli LG et al (2012) Mir-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. J Cell Biol 199:347–363

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rivetti di Val Cervo P, Lena AM, Nicoloso M, Rossi S, Mancini M, Zhou H, Saintigny G, Dellambra E, Odorisio T, Mahe C et al (2012) p63-microRNA feedback in keratinocyte senescence. Proc Natl Acad Sci U S A 109:1133–1138

    PubMed  PubMed Central  Google Scholar 

  15. Viticchiè G, Lena AM, Cianfarani F, Odorisio T, Annicchiarico-Petruzzelli M, Melino G, Candi E (2012) MicroRNA-203 contributes to skin re-epithelialization. Cell Death Dis 3:e435

    PubMed  PubMed Central  Google Scholar 

  16. Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16:167–179

    CAS  PubMed  Google Scholar 

  17. Chen L, Dzakah EE, Shan G (2018) Targetable long non-coding RNAs in cancer treatments. Cancer Lett 418:119–124

    CAS  PubMed  Google Scholar 

  18. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rashid F, Shah A, Shan G (2016) Long non-coding RNAs in the cytoplasm. Genomics Proteomics Bioinformatics 14:73–80

    PubMed  PubMed Central  Google Scholar 

  21. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283

    CAS  PubMed  Google Scholar 

  22. Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9:3–12

    CAS  PubMed  Google Scholar 

  23. Hombach S, Kretz M (2013) The non-coding skin: exploring the roles of long non-coding RNAs in epidermal homeostasis and disease. Bioessays 35:1093–1100

    CAS  PubMed  Google Scholar 

  24. Botchkareva NV (2017) The molecular revolution in cutaneous biology: noncoding RNAs: new molecular players in dermatology and cutaneous biology. J Invest Dermatol 137:e105–e111

    CAS  PubMed  Google Scholar 

  25. Kretz M, Webster DE, Flockhart RJ, Lee CS, Zehnder A, Lopez-Pajares V, Qu K, Zheng GXY, Chow J, Kim GE et al (2012) Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev 26:338–343

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, Zarnegar BJ, Boxer LD, Rios EJ, Tao S et al (2015) A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation. Dev Cell 32:693–706

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235

    CAS  PubMed  Google Scholar 

  28. Xu T, Liu X, Xia R, Yin L, Kong R, Chen W, Huang M, Shu Y (2015) SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer. Oncogene 34:5648–5661

    CAS  PubMed  Google Scholar 

  29. Zhou W, Zhang S, Li J, Li Z, Wang Y, Li X (2019) lncRNA TINCR participates in ALA-PDT-induced apoptosis and autophagy in cutaneous squamous cell carcinoma. J Cell Biochem 120:13893–13902

    CAS  PubMed  Google Scholar 

  30. Li R, Zhang L, Jia L, Duan Y, Li Y, Bao L, Sha N (2014) Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One 9:e100893

    PubMed  PubMed Central  Google Scholar 

  31. Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS, Perera RJ (2011) The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res 71:3852–3862

    CAS  PubMed  Google Scholar 

  32. Zhao W, Mazar J, Lee B, Sawada J, Li J-L, Shelley J, Govindarajan S, Towler D, Mattick JS, Komatsu M et al (2016) The long noncoding RNA SPRIGHTLY regulates cell proliferation in primary human melanocytes. J Invest Dermatol 136:819–828

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao J, Yin M, Deng H, Jin FQ, Xu S, Lu Y, Mastrangelo MA, Luo H, Jin ZG (2016) Cardiac Gab1 deletion leads to dilated cardiomyopathy associated with mitochondrial damage and cardiomyocyte apoptosis. Cell Death Differ 23:695–706

    CAS  PubMed  Google Scholar 

  34. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, Radaelli E, Eyckerman S, Leonelli C, Vanderheyden K et al (2016) Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531:518–522

    CAS  PubMed  Google Scholar 

  35. Sonkoly E, Bata-Csorgo Z, Pivarcsi A, Polyanka H, Kenderessy-Szabo A, Molnar G, Szentpali K, Bari L, Megyeri K, Mandi Y et al (2005) Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. J Biol Chem 280:24159–24167

    CAS  PubMed  Google Scholar 

  36. Gupta R, Ahn R, Lai K, Mullins E, Debbaneh M, Dimon M, Arron S, Liao W (2016) Landscape of long noncoding RNAs in psoriatic and healthy skin. J Invest Dermatol 136:603–609

    CAS  PubMed  Google Scholar 

  37. Zheng L-L, Li J-H, Wu J, Sun W-J, Liu S, Wang Z-L, Zhou H, Yang J-H, Qu L-H (2016) deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res 44:D196–D202

    CAS  PubMed  Google Scholar 

  38. Williamson L, Saponaro M, Boeing S, East P, Mitter R, Kantidakis T, Kelly GP, Lobley A, Walker J, Spencer-Dene B et al (2017) UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell 168:843–855.e13

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Herter EK, Xu Landén N (2017) Non-coding RNAs: new players in skin wound healing. Adv Wound Care 6:93–107

    Google Scholar 

  40. Kour S, Rath PC (2016) Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev 26:1–21

    CAS  PubMed  Google Scholar 

  41. Kim C, Kang D, Lee EK, Lee J-S (2017) Long noncoding RNAs and RNA-binding proteins in oxidative stress, cellular senescence, and age-related diseases. Oxidative Med Cell Longev 2017:1–21

    CAS  Google Scholar 

  42. Kashi K, Henderson L, Bonetti A, Carninci P (2016) Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta 1859:3–15

    CAS  PubMed  Google Scholar 

  43. Obernosterer G, Martinez J, Alenius M (2007) Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc 2:1508–1514

    CAS  PubMed  Google Scholar 

  44. Heller S, Sheane CA, Javed Z, Hudspeth AJ (1998) Molecular markers for cell types of the inner ear and candidate genes for hearing disorders. Proc Natl Acad Sci U S A 95:11400–11405

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Candi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mancini, M., Lena, A.M., Candi, E. (2020). Identification of Long Noncoding RNA by In Situ Hybridization Approaches. In: Botchkareva, ​.V., Westgate, G.E. (eds) Molecular Dermatology. Methods in Molecular Biology, vol 2154. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0648-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0648-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0647-6

  • Online ISBN: 978-1-0716-0648-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics