Skip to main content

In Vitro Characterization of Sumoylation of HR Proteins

  • Protocol
  • First Online:
Homologous Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2153))

  • 2506 Accesses

Abstract

In vitro analysis of posttranslational modifications such as sumoylation provides a great tool to not only identify the target proteins but also to characterize the specific effects of this modification on the protein features and uncover possible regulatory mechanism. In this chapter, we will describe the purification of yeast SUMO machinery proteins and their use to identify SUMO modification of target proteins in vitro. Furthermore, we will show several examples characterizing the effect of sumoylation on the biochemical activities of various proteins involved in homologous recombination (HR) that helped to better understand the regulatory role of this modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8(12):947–956. https://doi.org/10.1038/nrm2293

    Article  CAS  PubMed  Google Scholar 

  2. Hay RT (2005) SUMO: a history of modification. Mol Cell 18(1):1–12. https://doi.org/10.1016/j.molcel.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  3. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382. https://doi.org/10.1146/annurev.biochem.73.011303.074118

    Article  CAS  PubMed  Google Scholar 

  4. Sarangi P, Bartosova Z, Altmannova V, Holland C, Chavdarova M, Lee SE, Krejci L, Zhao X (2014) Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association. Nucleic Acids Res 42(10):6393–6404. https://doi.org/10.1093/nar/gku300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kolesar P, Sarangi P, Altmannova V, Zhao X, Krejci L (2012) Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 40(16):7831–7843. https://doi.org/10.1093/nar/gks484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Altmannova V, Eckert-Boulet N, Arneric M, Kolesar P, Chaloupkova R, Damborsky J, Sung P, Zhao X, Lisby M, Krejci L (2010) Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res 38(14):4708–4721. https://doi.org/10.1093/nar/gkq195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vigasova D, Sarangi P, Kolesar P, Vlasakova D, Slezakova Z, Altmannova V, Nikulenkov F, Anrather D, Gith R, Zhao X, Chovanec M, Krejci L (2013) Lif1 SUMOylation and its role in non-homologous end-joining. Nucleic Acids Res 41(10):5341–5353. https://doi.org/10.1093/nar/gkt236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278(45):44113–44120. https://doi.org/10.1074/jbc.M308357200

    Article  CAS  PubMed  Google Scholar 

  9. Sarangi P, Altmannova V, Holland C, Bartosova Z, Hao F, Anrather D, Ammerer G, Lee SE, Krejci L, Zhao X (2014) A versatile scaffold contributes to damage survival via sumoylation and nuclease interactions. Cell Rep 9(1):143–152. https://doi.org/10.1016/j.celrep.2014.08.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sacher M, Pfander B, Hoege C, Jentsch S (2006) Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat Cell Biol 8(11):1284–1290. https://doi.org/10.1038/ncb1488

    Article  CAS  PubMed  Google Scholar 

  11. Kolesar P, Altmannova V, Silva S, Lisby M, Krejci L (2016) Pro-recombination role of Srs2 protein requires SUMO (small ubiquitin-like modifier) but is independent of PCNA (proliferating cell nuclear antigen) interaction. J Biol Chem 291(14):7594–7607. https://doi.org/10.1074/jbc.M115.685891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lyndaker AM, Alani E (2009) A tale of tails: insights into the coordination of 3′ end processing during homologous recombination. BioEssays 31(3):315–321. https://doi.org/10.1002/bies.200800195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Altmannova V, Kolesar P, Krejci L (2012) SUMO wrestles with recombination. Biomol Ther 2(3):350–375. https://doi.org/10.3390/biom2030350

    Article  CAS  Google Scholar 

  14. Krejci L, Altmannova V, Spirek M, Zhao X (2012) Homologous recombination and its regulation. Nucleic Acids Res 40(13):5795–5818. https://doi.org/10.1093/nar/gks270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139. https://doi.org/10.1146/annurev-genet-051710-150955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seong C, Sehorn MG, Plate I, Shi I, Song B, Chi P, Mortensen U, Sung P, Krejci L (2008) Molecular anatomy of the recombination mediator function of Saccharomyces cerevisiae Rad52. J Biol Chem 283(18):12166–12174. https://doi.org/10.1074/jbc.M800763200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao X (2018) SUMO-mediated regulation of nuclear functions and signaling processes. Mol Cell 71(3):409–418. https://doi.org/10.1016/j.molcel.2018.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burkovics P, Sebesta M, Sisakova A, Plault N, Szukacsov V, Robert T, Pinter L, Marini V, Kolesar P, Haracska L, Gangloff S, Krejci L (2013) Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J 32(5):742–755. https://doi.org/10.1038/emboj.2013.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prakash S, Prakash L (2000) Nucleotide excision repair in yeast. Mutat Res 451(1–2):13–24

    Article  CAS  Google Scholar 

  20. Seol JH, Holland C, Li X, Kim C, Li F, Medina-Rivera M, Eichmiller R, Gallardo IF, Finkelstein IJ, Hasty P, Shim EY, Surtees JA, Lee SE (2018) Distinct roles of XPF-ERCC1 and Rad1-Rad10-Saw1 in replication-coupled and uncoupled inter-strand crosslink repair. Nat Commun 9(1):2025. https://doi.org/10.1038/s41467-018-04327-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271. https://doi.org/10.1146/annurev.genet.38.072902.091500

    Article  CAS  PubMed  Google Scholar 

  22. Bochman ML (2014) Roles of DNA helicases in the maintenance of genome integrity. Mol Cell Oncol 1(3):e963429. https://doi.org/10.4161/23723548.2014.963429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7(10):739–750. https://doi.org/10.1038/nrm2008

    Article  CAS  PubMed  Google Scholar 

  24. Bohm S, Bernstein KA (2014) The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair. DNA Repair (Amst) 22:123–132. https://doi.org/10.1016/j.dnarep.2014.07.007

    Article  CAS  Google Scholar 

  25. Marini V, Krejci L (2010) Srs2: the “odd-job man” in DNA repair. DNA Repair (Amst) 9(3):268–275. https://doi.org/10.1016/j.dnarep.2010.01.007

    Article  CAS  Google Scholar 

  26. Niu H, Klein HL (2017) Multifunctional roles of Saccharomyces cerevisiae Srs2 protein in replication, recombination and repair. FEMS Yeast Res 17(2). https://doi.org/10.1093/femsyr/fow111

  27. Saponaro M, Callahan D, Zheng X, Krejci L, Haber JE, Klein HL, Liberi G (2010) Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet 6(2):e1000858. https://doi.org/10.1371/journal.pgen.1000858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19(1):123–133. https://doi.org/10.1016/j.molcel.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  29. Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436(7049):428–433. https://doi.org/10.1038/nature03665

    Article  CAS  PubMed  Google Scholar 

  30. Jentsch S, Psakhye I (2013) Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu Rev Genet 47:167–186. https://doi.org/10.1146/annurev-genet-111212-133453

    Article  CAS  PubMed  Google Scholar 

  31. Kerscher O (2007) SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 8(6):550–555. https://doi.org/10.1038/sj.embor.7400980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matulova P, Marini V, Burgess RC, Sisakova A, Kwon Y, Rothstein R, Sung P, Krejci L (2009) Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J Biol Chem 284(12):7733–7745. https://doi.org/10.1074/jbc.M806192200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Erica Johnson (Thomas Jefferson University) and Dr. Yoshiko Kikuchi (University of Tokyo) for providing expression plasmids. This work was supported by the Czech Science Foundation (GACR 17-17720s); the National Program of Sustainability II (MEYS CR, project no. LQ1605); the Wellcome trust Collaborative grant (206292/E/17/Z); and European Structural and Investment Funds, Operational Programme Research, Development and Education—“Preclinical Progression of New Organic Compounds with Targeted Biological Activity” (Preclinprogress)—CZ.02.1.01/0.0/0.0/16_025/0007381). We are grateful to Peter Kolesar for the critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veronika Altmannova or Lumir Krejci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Altmannova, V., Krejci, L. (2021). In Vitro Characterization of Sumoylation of HR Proteins. In: Aguilera, A., Carreira, A. (eds) Homologous Recombination. Methods in Molecular Biology, vol 2153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0644-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0644-5_33

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0643-8

  • Online ISBN: 978-1-0716-0644-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics