Skip to main content

Analyzing Homologous Recombination at a Genome-Wide Level

  • Protocol
  • First Online:
Homologous Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2153))

Abstract

Among the types of damage, DNA double-strand breaks (DSBs) (provoked by various environmental stresses, but also during normal cell metabolic activity) are the most deleterious, as illustrated by the variety of human diseases associated with DSB repair defects. DSBs are repaired by two groups of pathways: homologous recombination (HR) and nonhomologous end joining. These pathways do not trigger the same mutational signatures, and multiple factors, such as cell cycle stage, the complexity of the lesion and also the genomic location, contribute to the choice between these repair pathways. To study the usage of the HR machinery at DSBs, we propose a genome-wide method based on the chromatin immunoprecipitation of the HR core component Rad51, followed by high-throughput sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marnef A, Cohen S, Legube G (2017) Transcription-coupled DNA double-strand break repair: active genes need special care. J Mol Biol 429:1277–1288. https://doi.org/10.1016/j.jmb.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  2. Sollier J, Cimprich KA (2015) Breaking bad: R-loops and genome integrity. Trends Cell Biol 25:514–522. https://doi.org/10.1016/j.tcb.2015.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gaillard H, Aguilera A (2016) Transcription as a threat to genome integrity. Annu Rev Biochem 85:291–317. https://doi.org/10.1146/annurev-biochem-060815-014908

    Article  CAS  PubMed  Google Scholar 

  4. Mladenov E, Magin S, Soni A, Iliakis G (2016) DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation. Semin Cancer Biol 37-38:51–64. https://doi.org/10.1016/j.semcancer.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  5. Fortuny A, Polo SE (2018) The response to DNA damage in heterochromatin domains. Chromosoma 127:291–300. https://doi.org/10.1007/s00412-018-0669-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clouaire T, Legube G (2015) DNA double strand break repair pathway choice: a chromatin based decision? Nucleus 6:107–113. https://doi.org/10.1080/19491034.2015.1010946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aymard F, Bugler B, Schmidt CK et al (2014) Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol 21:366–374. https://doi.org/10.1038/nsmb.2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clouaire T, Rocher V, Lashgari A et al (2018) Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures. Mol Cell 72:250–262.e6. https://doi.org/10.1016/j.molcel.2018.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crosetto N, Mitra A, Silva MJ et al (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 10:361–365. https://doi.org/10.1038/nmeth.2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yan WX, Mirzazadeh R, Garnerone S et al (2017) BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun 8:15058. https://doi.org/10.1038/ncomms15058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Biernacka A, Zhu Y, Skrzypczak M et al (2018) i-BLESS is an ultra-sensitive method for detection of DNA double-strand breaks. Commun Biol 1:181. https://doi.org/10.1038/s42003-018-0165-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lensing SV, Marsico G, Hänsel-Hertsch R et al (2016) DSBCapture: in situ capture and sequencing of DNA breaks. Nat Methods 13:855–857. https://doi.org/10.1038/nmeth.3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Canela A, Sridharan S, Sciascia N et al (2016) DNA breaks and end resection measured genome-wide by end sequencing. Mol Cell 63:898–911. https://doi.org/10.1016/j.molcel.2016.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iacovoni JS, Caron P, Lassadi I et al (2010) High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J 29:1446–1457. https://doi.org/10.1038/emboj.2010.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Canela A, Maman Y, Huang S-YN et al (2019) Topoisomerase II-induced chromosome breakage and translocation is determined by chromosome architecture and transcriptional activity. Mol Cell. https://doi.org/10.1016/j.molcel.2019.04.030

  16. Gothe HJ, Bouwman BAM, Gusmao EG et al (2019) Spatial chromosome folding and active transcription drive DNA fragility and formation of oncogenic MLL translocations. Mol Cell. https://doi.org/10.1016/j.molcel.2019.05.015

Download references

Acknowledgment

Funding in G.L. laboratory is provided by grants from the European Research Council (ERC-2014-CoG 647344), Agence Nationale pour la Recherche (ANR-14-CE10-0002-01), the Institut National contre le Cancer (INCA), and the Ligue Nationale contre le Cancer (LNCC). C.A salary is provided by FRM (Fondation pour la Recherche Medicale) (FRM FDT201904007941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëlle Legube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arnould, C., Rocher, V., Legube, G. (2021). Analyzing Homologous Recombination at a Genome-Wide Level. In: Aguilera, A., Carreira, A. (eds) Homologous Recombination. Methods in Molecular Biology, vol 2153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0644-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0644-5_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0643-8

  • Online ISBN: 978-1-0716-0644-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics