Skip to main content

Investigation of Break-Induced Replication in Yeast

  • Protocol
  • First Online:
Homologous Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2153))

Abstract

Repair of double-strand DNA breaks (DSBs) is important for preserving genomic integrity and stability. Break-induced replication (BIR) is a mechanism aimed to repair one-ended double-strand DNA breaks, similar to those formed by replication fork collapse or by telomere erosion. Unlike S-phase replication, BIR is carried out by a migrating DNA bubble and is associated with conservative inheritance of newly synthesized DNA. This unusual DNA synthesis leads to high level of mutagenesis and chromosomal rearrangements during BIR. Here, we focus on several genetic and molecular methods to investigate BIR using our system in yeast Saccharomyces cerevisiae where BIR is initiated by a site-specific DNA break, and the repair involves two copies of chromosome III.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehta A, Haber JE (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6(9):a016428

    Article  Google Scholar 

  2. Saini N et al (2013) Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502(7471):389–392

    Article  CAS  Google Scholar 

  3. Wilson MA et al (2013) Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration. Nature 502(7471):393–396

    Article  CAS  Google Scholar 

  4. Donnianni RA, Symington LS (2013) Break-induced replication occurs by conservative DNA synthesis. Proc Natl Acad Sci U S A 110(33):13475–13480

    Article  CAS  Google Scholar 

  5. Sakofsky CJ et al (2014) Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep 7(5):1640–1648

    Article  CAS  Google Scholar 

  6. Vasan S et al (2014) Cascades of genetic instability resulting from compromised break-induced replication. PLoS Genet 10(2):e1004119

    Article  Google Scholar 

  7. Sakofsky CJ et al (2015) Translesion polymerases drive microhomology-mediated break-induced replication leading to complex chromosomal rearrangements. Mol Cell 60(6):860–872

    Article  CAS  Google Scholar 

  8. Smith CE, Lam AF, Symington LS (2009) Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase delta complex. Mol Cell Biol 29(6):1432–1441

    Article  CAS  Google Scholar 

  9. Elango R et al (2017) Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2. Nat Commun 8(1):1790

    Article  Google Scholar 

  10. Malkova A, Ivanov EL, Haber JE (1996) Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci U S A 93(14):7131–7136

    Article  CAS  Google Scholar 

  11. Malkova A et al (2005) RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 25(3):933–944

    Article  CAS  Google Scholar 

  12. Morrow DM, Connelly C, Hieter P (1997) “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147(2):371–382

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Davis AP, Symington LS (2004) RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24(6):2344–2351

    Article  CAS  Google Scholar 

  14. Deem A et al (2008) Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics 179(4):1845–1860

    Article  CAS  Google Scholar 

  15. Roberts SA, Gordenin DA (2014) Clustered and genome-wide transient mutagenesis in human cancers: hypermutation without permanent mutators or loss of fitness. BioEssays 36(4):382–393

    Article  CAS  Google Scholar 

  16. Elango R et al (2019) Repair of base damage within break-induced replication intermediates promotes kataegis associated with chromosome rearrangements. Nucleic Acids Res 47(18):9666–9684

    Article  CAS  Google Scholar 

  17. Shcherbakova PV, Pavlov YI (1996) 3′-->5′ exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics 142(3):717–726

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoopes JI et al (2017) Avoidance of APOBEC3B-induced mutation by error-free lesion bypass. Nucleic Acids Res 45(9):5243–5254

    Article  CAS  Google Scholar 

  19. Chan K et al (2015) An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet 47(9):1067–1072

    Article  CAS  Google Scholar 

  20. Saini N et al (2016) The Impact of environmental and endogenous damage on somatic mutation load in human skin fibroblasts. PLoS Genet 12(10):e1006385

    Article  Google Scholar 

  21. Sambrook J, Russell DW (2006) Southern blotting: capillary transfer of DNA to membranes. CSH Protoc 2006(1):pii: pdb.prot4040

    Google Scholar 

  22. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci U S A 81(7):1991–1995

    Article  CAS  Google Scholar 

  23. Deem A et al (2011) Break-induced replication is highly inaccurate. PLoS Biol 9(2):e1000594

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.M. is supported by R35GM127006 grant from NIGMS, R03ES029306, and R21 ES030307 from NIEHS. S.A.R. is supported by R01 award CA218112 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Malkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Osia, B., Elango, R., Kramara, J., Roberts, S.A., Malkova, A. (2021). Investigation of Break-Induced Replication in Yeast. In: Aguilera, A., Carreira, A. (eds) Homologous Recombination. Methods in Molecular Biology, vol 2153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0644-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0644-5_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0643-8

  • Online ISBN: 978-1-0716-0644-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics