Skip to main content

Methods to Map Meiotic Recombination Proteins in Saccharomyces cerevisiae

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2153))

Abstract

Meiotic recombination is triggered by programmed DNA double-strand breaks (DSBs), catalyzed by the type II topoisomerase-like Spo11 protein. Meiotic DSBs are repaired by homologous recombination, which produces either crossovers or noncrossovers, this decision being linked to the binding of proteins specific of each pathway. Mapping the binding of these proteins along chromosomes in wild type or mutant yeast background is extremely useful to understand how and at which step the decision to repair a DSB with a crossover is taken. It is now possible to obtain highly synchronous yeast meiotic populations, which, combined with appropriate negative controls, enable to detect by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) the transient binding of diverse recombination proteins with high sensitivity and resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG, Tischfield SE, Zhu X, Neale MJ, Jasin M, Socci ND, Hochwagen A, Keeney S (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144(5):719–731. https://doi.org/10.1016/j.cell.2011.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hunter N (2015) Meiotic recombination: the essence of heredity. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a016618

  3. Muller HJ (1916) The mechanism of crossing over. Am Nat 50:193–434

    Article  Google Scholar 

  4. Chen SY, Tsubouchi T, Rockmill B, Sandler JS, Richards DR, Vader G, Hochwagen A, Roeder GS, Fung JC (2008) Global analysis of the meiotic crossover landscape. Dev Cell 15(3):401–415. https://doi.org/10.1016/j.devcel.2008.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Serrentino ME, Borde V (2012) The spatial regulation of meiotic recombination hotspots: are all DSB hotspots crossover hotspots? Exp Cell Res 318(12):1347–1352. https://doi.org/10.1016/j.yexcr.2012.03.025

    Article  CAS  PubMed  Google Scholar 

  6. Serrentino ME, Chaplais E, Sommermeyer V, Borde V (2013) Differential association of the conserved SUMO ligase Zip3 with meiotic double-strand break sites reveals regional variations in the outcome of meiotic recombination. PLoS Genet 9(4):e1003416. https://doi.org/10.1371/journal.pgen.1003416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chia M, van Werven FJ (2016) Temporal expression of a master regulator drives synchronous sporulation in budding yeast. G3 (Bethesda). https://doi.org/10.1534/g3.116.034983

  8. De Muyt A, Pyatnitskaya A, Andreani J, Ranjha L, Ramus C, Laureau R, Fernandez-Vega A, Holoch D, Girard E, Govin J, Margueron R, Coute Y, Cejka P, Guerois R, Borde V (2018) A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes Dev 32(3-4):283–296. https://doi.org/10.1101/gad.308510.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murakami H, Borde V, Nicolas A, Keeney S (2009) Gel electrophoresis assays for analyzing DNA double-strand breaks in Saccharomyces cerevisiae at various spatial resolutions. Methods Mol Biol 557:117–142

    Article  CAS  Google Scholar 

  10. Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106(1):59–70

    Article  CAS  Google Scholar 

  11. Brachet E, Beneut C, Serrentino ME, Borde V (2015) The CAF-1 and Hir histone chaperones associate with sites of meiotic double-strand breaks in budding yeast. PLoS One 10:e0125965. https://doi.org/10.1371/journal.pone.0125965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Borde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sanchez, A., Borde, V. (2021). Methods to Map Meiotic Recombination Proteins in Saccharomyces cerevisiae. In: Aguilera, A., Carreira, A. (eds) Homologous Recombination. Methods in Molecular Biology, vol 2153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0644-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0644-5_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0643-8

  • Online ISBN: 978-1-0716-0644-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics