Skip to main content

Dissection of the Role of CCM Genes in Tubulogenesis Using the Drosophila Tracheal System as a Model

  • Protocol
  • First Online:
Cerebral Cavernous Malformations (CCM)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2152))

Abstract

Embryos deficient for an essential gene may show complex phenotypes that reflect pleiotropic functions and non-cell-autonomous requirements for the encoded protein. The generation of mosaic animals, where most cells are wild type, but a few cells are mutant, is a powerful tool permitting the detailed analysis of the cell autonomous function of a gene, in a particular cell type, at cellular and subcellular resolutions. Here we apply this method to the analysis of the Cerebral Cavernous Malformations 3 (CCM3) pathway in Drosophila.

The conserved CCM3 protein functions together with its binding partner, Germinal Center Kinase III (Wheezy/GckIII in Drosophila, MST3, STK24, and STK25 in human) in the regulation of tube morphogenesis (Bergametti et al. Am J Hum Genet. 76:42–51, 2005; Fidalgo et al. J Cell Sci. 123:1274–1284, 2010; Guclu et al. Neurosurgery. 57:1008–1013, 2005; Lant et al. Nat Commun. 6:6449, 2015; Song et al. Dev Cell. 25:507–519, 2013; Ceccarelli et al. J Biol Chem. 286:25056–25064, 2011; Rehain-Bell et al. Curr Biol. 27:860–867, 2017; Xu et al. Structure. 21:1059–1066, 2013; Zhang et al. Front Biosci. 17:2295–2305, 2012; Zhang et al. Dev Cell. 27:215–226, 2013; Zheng et al. J Clin Invest. 120:2795–2804, 2010). The Drosophila proteins play a role in the regulation of tube shape in the tracheal (respiratory) system, analogous to the role of the human proteins in the vascular system. To understand the cellular basis for tube dilation defects caused by loss of pathway function, we describe techniques for the generation and analysis of positively marked homozygous mutant GckIII tracheal cells, coupled with an “open book” preparation that can be subjected to immunofluorescent analysis. Dozens of mutant tracheal cells are generated per mosaic animal, and neighboring heterozygous cells in the same animal serve as ideal internal controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, Jacquet G, Lonjon M, Moreau JJ, Neau JP, Parker F, Tremoulet M, Tournier-Lasserve E, Société Française de Neurochirurgie (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76(1):42–51. https://doi.org/10.1086/426952

    Article  CAS  PubMed  Google Scholar 

  2. Guclu B, Ozturk AK, Pricola KL, Bilguvar K, Shin D, O’Roak BJ, Gunel M (2005) Mutations in apoptosis-related gene, PDCD10, cause cerebral cavernous malformation 3. Neurosurgery 57(5):1008–1013

    Article  Google Scholar 

  3. Lampugnani MG, Malinverno M, Dejana E, Rudini N (2017) Endothelial cell disease: emerging knowledge from cerebral cavernous malformations. Curr Opin Hematol 24(3):256–264. https://doi.org/10.1097/MOH.0000000000000338

    Article  CAS  PubMed  Google Scholar 

  4. Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N, Girard R, Zeineddine HA, Lightle R, Moore T, Cao Y, Shenkar R, Chen M, Mericko P, Yang J, Li L, Tanes C, Kobuley D, Vosa U, Whitehead KJ, Li DY, Franke L, Hart B, Schwaninger M, Henao-Mejia J, Morrison L, Kim H, Awad IA, Zheng X, Kahn ML (2017) Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 545(7654):305–310. https://doi.org/10.1038/nature22075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou Z, Tang AT, Wong WY, Bamezai S, Goddard LM, Shenkar R, Zhou S, Yang J, Wright AC, Foley M, Arthur JS, Whitehead KJ, Awad IA, Li DY, Zheng X, Kahn ML (2016) Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532(7597):122–126. https://doi.org/10.1038/nature17178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA (2009) Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 18(5):919–930. https://doi.org/10.1093/hmg/ddn430

    Article  CAS  PubMed  Google Scholar 

  7. McDonald DA, Shi C, Shenkar R, Gallione CJ, Akers AL, Li S, De Castro N, Berg MJ, Corcoran DL, Awad IA, Marchuk DA (2014) Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 23(16):4357–4370. https://doi.org/10.1093/hmg/ddu153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Detter MR, Snellings DA, Marchuk DA (2018) Cerebral cavernous malformations develop through clonal expansion of mutant endothelial cells. Circ Res 123(10):1143–1151. https://doi.org/10.1161/CIRCRESAHA.118.313970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malinverno M, Maderna C, Abu Taha A, Corada M, Orsenigo F, Valentino M, Pisati F, Fusco C, Graziano P, Giannotta M, Yu QC, Zeng YA, Lampugnani MG, Magnusson PU, Dejana E (2019) Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nat Commun 10(1):2761. https://doi.org/10.1038/s41467-019-10707-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH, Kucherlapati R, Brainer J, Ginsberg MH, Awad IA, Marchuk DA (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20(2):211–222. https://doi.org/10.1093/hmg/ddq433

    Article  CAS  PubMed  Google Scholar 

  11. Boulday G, Blecon A, Petit N, Chareyre F, Garcia LA, Niwa-Kawakita M, Giovannini M, Tournier-Lasserve E (2009) Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Model Mech 2(3–4):168–177. https://doi.org/10.1242/dmm.001263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boulday G, Rudini N, Maddaluno L, Blecon A, Arnould M, Gaudric A, Chapon F, Adams RH, Dejana E, Tournier-Lasserve E (2011) Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. J Exp Med 208(9):1835–1847. https://doi.org/10.1084/jem.20110571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeineddine HA, Girard R, Saadat L, Shen L, Lightle R, Moore T, Cao Y, Hobson N, Shenkar R, Avner K, Chaudager K, Koskimaki J, Polster SP, Fam MD, Shi C, Lopez-Ramirez MA, Tang AT, Gallione C, Kahn ML, Ginsberg M, Marchuk DA, Awad IA (2019) Phenotypic characterization of murine models of cerebral cavernous malformations. Lab Invest 99(3):319–330. https://doi.org/10.1038/s41374-018-0030-y

    Article  CAS  PubMed  Google Scholar 

  14. Ceccarelli DF, Laister RC, Mulligan VK, Kean MJ, Goudreault M, Scott IC, Derry WB, Chakrabartty A, Gingras AC, Sicheri F (2011) CCM3/PDCD10 heterodimerizes with germinal center kinase III (GCKIII) proteins using a mechanism analogous to CCM3 homodimerization. J Biol Chem 286(28):25056–25064. https://doi.org/10.1074/jbc.M110.213777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu X, Wang X, Zhang Y, Wang DC, Ding J (2013) Structural basis for the unique heterodimeric assembly between cerebral cavernous malformation 3 and germinal center kinase III. Structure 21(6):1059–1066. https://doi.org/10.1016/j.str.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  16. Zheng X, Xu C, Di Lorenzo A, Kleaveland B, Zou Z, Seiler C, Chen M, Cheng L, Xiao J, He J, Pack MA, Sessa WC, Kahn ML (2010) CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. J Clin Invest 120(8):2795–2804. https://doi.org/10.1172/JCI39679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song Y, Eng M, Ghabrial AS (2013) Focal defects in single-celled tubes mutant for Cerebral cavernous malformation 3, GCKIII, or NSF2. Dev Cell 25(5):507–519. https://doi.org/10.1016/j.devcel.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Germani F, Bergantinos C, Johnston LA (2018) Mosaic analysis in Drosophila. Genetics 208(2):473–490. https://doi.org/10.1534/genetics.117.300256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Golic KG (1991) Site-specific recombination between homologous chromosomes in Drosophila. Science 252(5008):958–961. https://doi.org/10.1126/science.2035025

    Article  CAS  PubMed  Google Scholar 

  20. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59(3):499–509

    Article  CAS  Google Scholar 

  21. Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24(5):251–254

    Article  CAS  Google Scholar 

  22. Ghabrial AS, Krasnow MA (2006) Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441(7094):746–749. https://doi.org/10.1038/nature04829

    Article  CAS  PubMed  Google Scholar 

  23. Schottenfeld-Roames J, Ghabrial AS (2012) Whacked and Rab35 polarize dynein-motor-complex-dependent seamless tube growth. Nat Cell Biol 14(4):386–393. https://doi.org/10.1038/ncb2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin S. Ghabrial .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schweizer Burguete, A.B., Ghabrial, A.S. (2020). Dissection of the Role of CCM Genes in Tubulogenesis Using the Drosophila Tracheal System as a Model. In: Trabalzini, L., Finetti, F., Retta, S. (eds) Cerebral Cavernous Malformations (CCM) . Methods in Molecular Biology, vol 2152. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0640-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0640-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0639-1

  • Online ISBN: 978-1-0716-0640-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics