Skip to main content

Praziquantel: An Enigmatic, Yet Effective, Drug

  • Protocol
  • First Online:
Schistosoma mansoni

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2151))

Abstract

Praziquantel is a remarkably effective drug for the treatment of schistosomiasis. It has few side effects, some of which have been attributed to its inactive enantiomer. Few, if any, verified cases of drug resistance have been reported in a clinical setting. The preponderance of scientific evidence suggests that the drug works by dysregulating calcium homeostasis in the worm. Voltage-gated calcium channels have been proposed as the main pharmacological target of praziquantel, although no direct evidence of interaction with this protein is available. Here, the biochemical pharmacology of praziquantel is briefly reviewed and a hypothesis for its mechanism proposed. This hypothesis suggests that the drug works, in part, by disrupting an interaction between a voltage-gated calcium channel (SmCav1B) and an accessory protein, SmTAL1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Utzinger J, Becker SL, Knopp S, Blum J, Neumayr AL, Keiser J, Hatz CF (2012) Neglected tropical diseases: diagnosis, clinical management, treatment and control. Swiss Med Wkly 142:w13727. https://doi.org/10.4414/smw.2012.13727

    Article  PubMed  Google Scholar 

  2. Colley DG, Bustinduy AL, Secor WE, King CH (2014) Human schistosomiasis. Lancet 383(9936):2253–2264. https://doi.org/10.1016/S0140-6736(13)61949-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Houweling TA, Karim-Kos HE, Kulik MC, Stolk WA, Haagsma JA, Lenk EJ, Richardus JH, de Vlas SJ (2016) Socioeconomic inequalities in neglected tropical diseases: a systematic review. PLoS Negl Trop Dis 10(5):e0004546. https://doi.org/10.1371/journal.pntd.0004546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6(7):411–425. https://doi.org/10.1016/S1473-3099(06)70521-7

    Article  PubMed  Google Scholar 

  5. Bueding E, Mansour JM (1957) The relationship between inhibition of phosphofructokinase activity and the mode of action of trivalent organic antimonials on Schistosoma mansoni. Br J Pharmacol Chemother 12(2):159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Timson DJ (2016) Metabolic enzymes of Helminth parasites: potential as drug targets. Curr Protein Pept Sci 17(3):280–295

    Article  CAS  PubMed  Google Scholar 

  7. Su JG, Mansour JM, Mansour TE (1996) Purification, kinetics and inhibition by antimonials of recombinant phosphofructokinase from Schistosoma mansoni. Mol Biochem Parasitol 81(2):171–178. https://doi.org/10.1016/0166685196027028

    Article  CAS  PubMed  Google Scholar 

  8. Foster R (1987) A review of clinical experience with oxamniquine. Trans R Soc Trop Med Hyg 81(1):55–59

    Article  CAS  PubMed  Google Scholar 

  9. Kramer CV, Zhang F, Sinclair D, Olliaro PL (2014) Drugs for treating urinary schistosomiasis. Cochrane Database Syst Rev 8:Cd000053. https://doi.org/10.1002/14651858.CD000053.pub3

    Article  Google Scholar 

  10. Feldmeier H, Doehring E (1987) Clinical experience with metrifonate. Review with emphasis on its use in endemic areas. Acta Trop 44(3):357–368

    CAS  PubMed  Google Scholar 

  11. Cioli D, Pica-Mattoccia L, Archer S (1995) Antischistosomal drugs: past, present and future? Pharmacol Ther 68(1):35–85

    Article  CAS  PubMed  Google Scholar 

  12. Thetiot-Laurent SA, Boissier J, Robert A, Meunier B (2013) Schistosomiasis chemotherapy. Angew Chem Int Ed Engl 52(31):7936–7956. https://doi.org/10.1002/anie.201208390

    Article  CAS  PubMed  Google Scholar 

  13. Anonymous (2015) 19th WHO model list of essential medicines. 2015. World Health Organization. World Health Organization, Geneva

    Google Scholar 

  14. Olveda DU, McManus DP, Ross AG (2016) Mass drug administration and the global control of schistosomiasis: successes, limitations and clinical outcomes. Curr Opin Infect Dis 29(6):595–608. https://doi.org/10.1097/qco.0000000000000312

    Article  CAS  PubMed  Google Scholar 

  15. Cioli D, Pica-Mattoccia L, Basso A, Guidi A (2014) Schistosomiasis control: praziquantel forever? Mol Biochem Parasitol 195(1):23–29. S0166-6851(14)00075-9

    Article  CAS  PubMed  Google Scholar 

  16. Meyer T, Sekljic H, Fuchs S, Bothe H, Schollmeyer D, Miculka C (2009) Taste, a new incentive to switch to (R)-praziquantel in schistosomiasis treatment. PLoS Negl Trop Dis 3(1):e357. https://doi.org/10.1371/journal.pntd.0000357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu YH, Qian MX, Wang XG, Jia J, Wang QN, Jiang YF, Wang RQ, Yan SH, Chen BY, Li JS et al (1986) Comparative efficacy of praziquantel and its optic isomers in experimental therapy of schistosomiasis japonica in rabbits. Chin Med J 99(12):935–940

    CAS  PubMed  Google Scholar 

  18. Xiao SH, Catto BA (1989) Comparative in vitro and in vivo activity of racemic praziquantel and its levorotated isomer on Schistosoma mansoni. J Infect Dis 159(3):589–592

    Article  CAS  PubMed  Google Scholar 

  19. Organization WHO (1995) WHO model prescribing information: drugs used in parasitic diseases. World Health Organization, Geneva

    Google Scholar 

  20. Manders S (2019) 9.11 tropical infectious diseases. In: Textbook of adult emergency medicine (E-book), 5th edn. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  21. Kusel J, Hagan P (1999) Praziquantel--its use, cost and possible development of resistance. Parasitol Today 15(9):352–354

    Article  CAS  PubMed  Google Scholar 

  22. Mwangi IN, Sanchez MC, Mkoji GM, Agola LE, Runo SM, Cupit PM, Cunningham C (2014) Praziquantel sensitivity of Kenyan Schistosoma mansoni isolates and the generation of a laboratory strain with reduced susceptibility to the drug. Int J Parasitol Drugs Drug Resist 4(3):296–300. https://doi.org/10.1016/j.ijpddr.2014.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thomas CM, Timson DJ (2020) The mechanism of action of praziquantel: can new drugs exploit similar mechanisms? Curr Med Chem 27(5):676–696

    Google Scholar 

  24. Coles GC (1979) The effect of praziquantel on Schistosoma mansoni. J Helminthol 53(1):31–33

    Article  CAS  PubMed  Google Scholar 

  25. Greenberg RM (2005) Are Ca2+ channels targets of praziquantel action? Int J Parasitol 35(1):1–9. https://doi.org/10.1016/j.ijpara.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  26. Chan JD, Zarowiecki M, Marchant JS (2013) Ca2+ channels and praziquantel: a view from the free world. Parasitol Int 62(6):619–628. https://doi.org/10.1016/j.parint.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  27. Gnanasekar M, Salunkhe AM, Mallia AK, He YX, Kalyanasundaram R (2009) Praziquantel affects the regulatory myosin light chain of Schistosoma mansoni. Antimicrob Agents Chemother 53(3):1054–1060. https://doi.org/10.1128/AAC.01222-08

    Article  CAS  PubMed  Google Scholar 

  28. Angelucci F, Basso A, Bellelli A, Brunori M, Pica Mattoccia L, Valle C (2007) The anti-schistosomal drug praziquantel is an adenosine antagonist. Parasitology 134(Pt 9):1215–1221. https://doi.org/10.1017/S0031182007002600

    Article  CAS  PubMed  Google Scholar 

  29. Chan JD, Cupit PM, Gunaratne GS, McCorvy JD, Yang Y, Stoltz K, Webb TR, Dosa PI, Roth BL, Abagyan R, Cunningham C, Marchant JS (2017) The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand. Nat Commun 8(1):1910. https://doi.org/10.1038/s41467-017-02084-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ben-Johny M, Yue DT (2014) Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J Gen Physiol 143(6):679–692. https://doi.org/10.1085/jgp.201311153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomas CM, Timson DJ (2018) Calmodulins from Schistosoma mansoni: biochemical analysis and interaction with IQ-motifs from voltage-gated calcium channels. Cell Calcium 74:1–13

    Article  CAS  PubMed  Google Scholar 

  32. Thomas CM, Timson DJ (2020) The Schistosoma mansoni tegumental allergen protein, SmTAL1: binding to an IQ-motif from a voltage-gated ion channel and effects of praziquantel. Cell Calcium 86:102161

    Article  CAS  PubMed  Google Scholar 

  33. Thomas CM, Timson DJ (2016) A mysterious family of calcium-binding proteins from parasitic worms. Biochem Soc Trans 44(4):1005–1010. https://doi.org/10.1042/BST20150270

    Article  CAS  PubMed  Google Scholar 

  34. Fitzsimmons CM, Jones FM, Stearn A, Chalmers IW, Hoffmann KF, Wawrzyniak J, Wilson S, Kabatereine NB, Dunne DW (2012) The Schistosoma mansoni tegumental-allergen-like (TAL) protein family: influence of developmental expression on human IgE responses. PLoS Negl Trop Dis 6(4):e1593. https://doi.org/10.1371/journal.pntd.0001593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas CM, Fitzsimmons CM, Dunne DW, Timson DJ (2015) Comparative biochemical analysis of three members of the Schistosoma mansoni TAL family: differences in ion and drug binding properties. Biochimie 108:40–47. https://doi.org/10.1016/j.biochi.2014.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carson J, Thomas CM, McGinty A, Takata G, Timson DJ (2018) The tegumental allergen-like proteins of Schistosoma mansoni: a biochemical study of SmTAL4-TAL13. Mol Biochem Parasitol 221:14–22. https://doi.org/10.1016/j.molbiopara.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  37. Thomas CM, Timson DJ (2018) The mechanism of action of Praziquantel: six hypotheses. Curr Top Med Chem 18(18):1575–1584. https://doi.org/10.2174/1568026618666181029143214

    Article  CAS  PubMed  Google Scholar 

  38. Park S-K, Gunaratne GS, Chulkov EG, Moehring F, McCusker P, Dosa PI, Chan JD, Stucky CL, Marchant JS (2019) The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. J Biol Chem 294(49):18873–18880

    Google Scholar 

  39. Park S-K, Marchant JS (2020) The journey to discovering a flatworm target of praziquantel: a long TRP. Trends Parasitol 36(2):182–194

    Google Scholar 

Download references

Acknowledgments

I thank my colleagues and students for many interesting discussions on molecular parasitology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Timson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Timson, D.J. (2020). Praziquantel: An Enigmatic, Yet Effective, Drug. In: Timson, D.J. (eds) Schistosoma mansoni. Methods in Molecular Biology, vol 2151. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0635-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0635-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0634-6

  • Online ISBN: 978-1-0716-0635-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics