Skip to main content

Cyclodextrins for Probing Plasma Membrane Lipids

  • Protocol
  • First Online:
Analysis of Membrane Lipids

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Cyclodextrins are cyclic molecules with a hydrophilic external structure and a hydrophobic internal cavity. Due to their chemical structure, cyclodextrins can form complexes with hydrophobic or amphiphilic molecules, including lipids. This property has resulted in the widespread use of cyclodextrins for characterization and manipulation of lipids in biological membranes. In this chapter, the use of cyclodextrins for characterization of lipids in the cell plasma membrane is discussed. First, the chemical structure of different cyclodextrins is explained. Then, the current knowledge on the mechanisms of cyclodextrin–lipid interaction and the role of cyclodextrin and lipid chemical structure in the outcome of such interactions is summarized. The use of cyclodextrins for manipulation of plasma membrane lipids and its application to study membrane lipid rafts is also reviewed. Finally, future directions in the field and current opportunities to utilize cyclodextrins to provide a better understanding of the composition and organization of lipids in the plasma membrane are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD:

Cyclodextrin

CEγCD:

Carboxyethylated-γCD

DMβCD:

Dimethyl-β-cyclodextrin

DMPC:

Dimyristoyl phosphocholine

DPPC:

Dipalmitoyl phosphatidylcholine

DPPE:

Dipalmitoyl phosphoethanolamine

DSPC:

Distearoyl phosphocholine

GUV:

Giant unilamellar vesicle

HPαCD:

Hydroxypropylated-αCD

HPβCD:

Hydroxypropyl-βCD

LUV:

Large unilamellar vesicle

MβCD:

Methyl-β-cyclodextrin

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

POPC:

1-Palmitoyl-2-oleoyl-glycero-3-phosphocholine

SM:

Sphingomyelin

SUV:

Small unilamellar vesicles

TMβCD:

Trimethyl-β-cyclodextrin

References

  1. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1754

    CAS  PubMed  Google Scholar 

  2. Bender ML, Komiyama M (2012) Cyclodextrin chemistry, vol 6. Springer Science & Business Media, Berlin

    Google Scholar 

  3. Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035

    CAS  PubMed  Google Scholar 

  4. Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38(11):2264–2272

    CAS  PubMed  Google Scholar 

  5. Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768(6):1311–1324

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pitha J, Irie T, Sklar PB, Nye JS (1988) Drug solubilizers to aid pharmacologists: amorphous cyclodextrin derivatives. Life Sci 43(6):493–502

    CAS  PubMed  Google Scholar 

  7. Jin Z-Y (2013) Cyclodextrin chemistry: preparation and application. World Scientific, Singapore

    Google Scholar 

  8. Shieh WJ, Hedges A (1996) Properties and applications of cyclodextrins. J Macromol Sci A Pure Appl Chem 33(5):673–683

    Google Scholar 

  9. Hammoud Z, Khreich N, Auezova L, Fourmentin S, Elaissari A, Greige-Gerges H (2019) Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 564:59–76

    CAS  PubMed  Google Scholar 

  10. Uekama K (2004) Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull (Tokyo) 52(8):900–915

    CAS  Google Scholar 

  11. Szente L, Fenyvesi E (2017) Cyclodextrin-lipid complexes: cavity size matters. Struct Chem 28(2):479–492

    CAS  Google Scholar 

  12. Ravichandran R, Divakar S (1998) Inclusion of ring a of cholesterol inside the β-cyclodextrin cavity: evidence from oxidation reactions and structural studies. J Incl Phenom Mol Recognit Chem 30(3):253–270

    CAS  Google Scholar 

  13. Yu Y, Chipot C, Cai W, Shao X (2006) Molecular dynamics study of the inclusion of cholesterol into cyclodextrins. J Phys Chem B 110(12):6372–6378

    CAS  PubMed  Google Scholar 

  14. Loftsson T, Magnúsdóttir A, Másson M, Sigurjónsdóttir JF (2002) Self-association and cyclodextrin solubilization of drugs. J Pharm Sci 91(11):2307–2316

    CAS  PubMed  Google Scholar 

  15. López CA, de Vries AH, Marrink SJ (2011) Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput Biol 7(3):e1002020

    PubMed  PubMed Central  Google Scholar 

  16. Phillips MC, Johnson WJ, Rothblat GH (1987) Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta 906(2):223–276

    CAS  PubMed  Google Scholar 

  17. Denz M, Haralampiev I, Schiller S, Szente L, Herrmann A, Huster D, Müller P (2016) Interaction of fluorescent phospholipids with cyclodextrins. Chem Phys Lipids 194:37–48

    CAS  PubMed  Google Scholar 

  18. Szejtli J, Cserhati T, Szögyi M (1986) Interactions between cyclodextrins and cell-membrane phospholipids. Carbohydr Polym 6(1):35–49

    CAS  Google Scholar 

  19. Sanemasa I, Osajima T, Deguchi T (1990) Association of C5–C9 normal alkanes with cyclodextrins in aqueous medium. B Chem Soc Jpn 63(10):2814–2819

    CAS  Google Scholar 

  20. Tanhuanpää K, Cheng KH, Anttonen K, Virtanen JA, Somerharju P (2001) Characteristics of pyrene phospholipid/γ-cyclodextrin complex. Biophys J 81(3):1501–1510

    PubMed  PubMed Central  Google Scholar 

  21. Anderson TG, Tan A, Ganz P, Seelig J (2004) Calorimetric measurement of phospholipid interaction with methyl-β-cyclodextrin. Biochemistry 43(8):2251–2261

    CAS  PubMed  Google Scholar 

  22. Nishijo J, Shiota S, Mazima K, Inoue Y, Mizuno H, Yoshida J (2000) Interactions of cyclodextrins with dipalmitoyl, distearoyl, and dimyristoyl phosphatidyl choline liposomes. A study by leakage of carboxyfluorescein in inner aqueous phase of unilamellar liposomes. Chem Pharm Bull (Tokyo) 48(1):48–52

    CAS  Google Scholar 

  23. Fauvelle F, Debouzy JC, Crouzy S, Göschl M, Chapron Y (1997) Mechanism of α-cyclodextrin-lnduced hemolysis. 1. The two-step extraction of phosphatidylinositol from the membrane. J Pharm Sci 86(8):935–943

    CAS  PubMed  Google Scholar 

  24. Debouzy JC, Fauvelle F, Crouzy S, Girault L, Chapron Y, Göschl M, Gadelle A (1998) Mechanism of α-cyclodextrin induced hemolysis. 2. A study of the factors controlling the association with serine-, ethanolamine-, and choline-phospholipids. J Pharm Sci 87(1):59–66

    CAS  PubMed  Google Scholar 

  25. Fauvelle F, Debouzy JC, Nardin R, Gadelle A (1994) Nuclear magnetic resonance study of a polar headgroup determined α-cyclodextrin-phospholipid association. Bioelectrochem Bioenerg 33(1):95–99

    CAS  Google Scholar 

  26. Coisne C, Tilloy S, Monflier E, Wils D, Fenart L, Gosselet F (2016) Cyclodextrins as emerging therapeutic tools in the treatment of cholesterol-associated vascular and neurodegenerative diseases. Molecules 21(12):E1748

    PubMed  Google Scholar 

  27. Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47(7):1597–1598

    CAS  PubMed  Google Scholar 

  28. Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, Phillips MC, Rothblat GH (1995) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 270(29):17250–17256

    CAS  PubMed  Google Scholar 

  29. Yancey PG, Rodrigueza WV, Kilsdonk EP, Stoudt GW, Johnson WJ, Phillips MC, Rothblat GH (1996) Cellular cholesterol efflux mediated by cyclodextrins demonstration of kinetic pools and mechanism of efflux. J Biol Chem 271(27):16026–16034

    CAS  PubMed  Google Scholar 

  30. Steck TL, Ye J, Lange Y (2002) Probing red cell membrane cholesterol movement with cyclodextrin. Biophys J 83(4):2118–2125

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC (1999) Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res 40(5):781–796

    CAS  PubMed  Google Scholar 

  32. Litz JP, Thakkar N, Portet T, Keller SL (2016) Depletion with cyclodextrin reveals two populations of cholesterol in model lipid membranes. Biophys J 110(3):635–645

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rouquette-Jazdanian AK, Pelassy C, Breittmayer JP, Aussel C (2006) Revaluation of the role of cholesterol in stabilizing rafts implicated in T cell receptor signaling. Cell Signal 18(1):105–122

    CAS  PubMed  Google Scholar 

  34. Hao M, Lin SX, Karylowski OJ, Wüstner D, McGraw TE, Maxfield FR (2002) Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem 277(1):609–617

    CAS  PubMed  Google Scholar 

  35. Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100(10):5813–5818

    CAS  PubMed  Google Scholar 

  36. Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    CAS  PubMed  Google Scholar 

  37. Scheiffele P, Rietveld A, Wilk T, Simons K (1999) Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 274(4):2038–2044

    CAS  PubMed  Google Scholar 

  38. Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13(4):470–477

    CAS  PubMed  Google Scholar 

  39. López CA, de Vries AH, Marrink SJ (2013) Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Rep 3:2071

    PubMed  PubMed Central  Google Scholar 

  40. Rodríguez-Acebes S, de la Cueva P, Fernández-Hernando C, Ferruelo AJ, Lasunción MA, Rawson RB, Martínez-Botas J, Gómez-Coronado D (2009) Desmosterol can replace cholesterol in sustaining cell proliferation and regulating the SREBP pathway in a sterol-Δ24-reductase-deficient cell line. Biochem J 420(2):305–318

    PubMed  PubMed Central  Google Scholar 

  41. Kim JH, Singh A, Del Poeta M, Brown DA, London E (2017) The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. J Cell Sci 130(16):2682–2695

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Delle Bovi RJ, Kim J, Suresh P, London E, Miller WT (2019) Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation. Biochim Biophys Acta Biomembr 1861(4):819–826

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J (1989) Differential effects of α-, β-and γ-cyclodextrins on human erythrocytes. Eur J Biochem 186(1–2):17–22

    CAS  PubMed  Google Scholar 

  44. Motoyama K, Arima H, Toyodome H, Irie T, Hirayama F, Uekama K (2006) Effect of 2, 6-di-O-methyl-α-cyclodextrin on hemolysis and morphological change in rabbit’s red blood cells. Eur J Pharm Sci 29(2):111–119

    CAS  PubMed  Google Scholar 

  45. Tanhuanpää K, Somerharju P (1999) γ-Cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture. Importance of molecular hydrophobicity in phospholipid trafficking studies. J Biol Chem 274(50):35359–35366

    PubMed  Google Scholar 

  46. Huang Z, London E (2013) Effect of cyclodextrin and membrane lipid structure upon cyclodextrin–lipid interaction. Langmuir 29(47):14631–14638

    CAS  PubMed  Google Scholar 

  47. Lin Q, London E (2014) Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. PLoS One 9(1):e87903

    PubMed  PubMed Central  Google Scholar 

  48. Clair JWS, London E (2019) Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. Biochim Biophys Acta Biomembr 1861(6):1112–1122

    Google Scholar 

  49. Cheng HT, London E (2009) Preparation and properties of asymmetric vesicles that mimic cell membranes effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 284(10):6079–6092

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Son M, London E (2013) The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure. J Lipid Res 54(1):223–231

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Son M, London E (2013) The dependence of lipid asymmetry upon polar headgroup structure. J Lipid Res 54(12):3385–3393

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kainu V, Hermansson M, Somerharju P (2008) Electrospray ionization mass spectrometry and exogenous heavy isotope-labeled lipid species provide detailed information on aminophospholipid acyl chain remodeling. J Biol Chem 283(6):3676–3687

    CAS  PubMed  Google Scholar 

  53. Kainu V, Hermansson M, Somerharju P (2010) Introduction of phospholipids to cultured cells with cyclodextrin. J Lipid Res 51(12):3533–3541

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E (2016) Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc Natl Acad Sci USA 113(49):14025–14030

    CAS  PubMed  Google Scholar 

  55. Szente L, Singhal A, Domokos A, Song B (2018) Cyclodextrins: assessing the impact of cavity size, occupancy, and substitutions on cytotoxicity and cholesterol homeostasis. Molecules 23(5):E1228

    PubMed  Google Scholar 

  56. Irie T, Otagiri M, Sunada M, Uekama K, Ohtani Y, Yamada Y, Sugiyama Y (1982) Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J Pharmacobiodyn 5(9):741–744

    CAS  PubMed  Google Scholar 

  57. Hinzey AH, Kline MA, Kotha SR, Sliman SM, Butler ES, Shelton AB, Gurney TR, Parinandi NL (2012) Choice of cyclodextrin for cellular cholesterol depletion for vascular endothelial cell lipid raft studies: cell membrane alterations, cytoskeletal reorganization and cytotoxicity. Indian J Biochem Biophys 49(5):329–341

    CAS  PubMed  Google Scholar 

  58. Kiss T, Fenyvesi F, Bácskay I, Váradi J, Fenyvesi E, Iványi R, Szente L, Tósaki A, Vecsernyés M (2010) Evaluation of the cytotoxicity of β-cyclodextrin derivatives: evidence for the role of cholesterol extraction. Eur J Pharm Sci 40(4):376–380

    CAS  PubMed  Google Scholar 

  59. Róka E, Ujhelyi Z, Deli M, Bocsik A, Fenyvesi É, Szente L, Fenyvesi F, Vecsernyés M, Váradi J, Fehér P, Gesztelyi R, Félix C, Perret F, Bácskay IK (2015) Evaluation of the cytotoxicity of α-cyclodextrin derivatives on the caco-2 cell line and human erythrocytes. Molecules 20(11):20269–20285

    PubMed  PubMed Central  Google Scholar 

  60. Leroy-Lechat F, Wouessidjewe D, Andreux J-P, Puisieux F, Duchêne D (1994) Evaluation of the cytotoxicity of cyclodextrins and hydroxypropylated derivatives. Int J Pharm 101(1–2):97–103

    CAS  Google Scholar 

  61. Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III Toxicological issues and safety evaluation. J Pharm Sci 86(2):147–162

    CAS  PubMed  Google Scholar 

  62. LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9(5):e1003353

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the NIH award R15ES030140 to AF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir M. Farnoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vahedi, A., Farnoud, A.M. (2020). Cyclodextrins for Probing Plasma Membrane Lipids. In: Prasad, R., Singh, A. (eds) Analysis of Membrane Lipids. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0631-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0631-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-0630-8

  • Online ISBN: 978-1-0716-0631-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics