Skip to main content

Expression of Cell Wall–Modifying Enzymes in Aspen for Improved Lignocellulose Processing

  • 808 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2149)

Abstract

Wood is an important source of biomass for materials and chemicals, and a target for genetic engineering of its properties for different applications or for research. Wood properties can be altered by using different enzymes acting on cell wall polymers postsynthetically in cell walls. This approach allows for a precise polymer structure modification thanks to the specificity of enzymes used. Such enzymes can originate from all kinds of organisms, or even be modified in a desired way for novel attributes. Here we present a general strategy for expressing a microbial enzyme in aspen and targeting it to cell wall, using an example of fungal glucuronoyl esterase. We describe methods of vector cloning, plant transformation, transgenic line selection and multiplication, testing for the presence of enzymatic activity in different cell compartments, and finally the method of plant transferring from sterile culture to the greenhouse conditions.

Key words

  • Fungal wood degrading enzymes
  • Protein targeting to cell wall
  • Gateway® cloning
  • Aspen transformation
  • Transgenic trees
  • Populus tremula × tremuloides
  • Vector design
  • In vitro culture

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0621-6_9
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0621-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63(2):551–565. https://doi.org/10.1093/jxb/err339

    CAS  CrossRef  PubMed  Google Scholar 

  2. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289. https://doi.org/10.1146/annurev-arplant-042809-112315

    CAS  CrossRef  PubMed  Google Scholar 

  3. Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20(7):291–296

    CAS  CrossRef  Google Scholar 

  4. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54(4):559–568. https://doi.org/10.1111/j.1365-313X.2008.03463.x

    CAS  CrossRef  PubMed  Google Scholar 

  5. Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13(3):305–312. https://doi.org/10.1016/j.pbi.2009.12.009

    CAS  CrossRef  PubMed  Google Scholar 

  6. Leboreiro J, Hilaly AK (2011) Biomass transportation model and optimum plant size for the production of ethanol. Bioresour Technol 102(3):2712–2723. https://doi.org/10.1016/j.biortech.2010.10.144

    CAS  CrossRef  PubMed  Google Scholar 

  7. Bonawitz ND, Chapple C (2013) Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 24(2):336–343. https://doi.org/10.1016/j.copbio.2012.11.004

    CAS  CrossRef  PubMed  Google Scholar 

  8. Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52(6):1154–1168. https://doi.org/10.1111/j.1365-313X.2007.03307.x

    CAS  CrossRef  PubMed  Google Scholar 

  9. Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17(8):2281–2295. https://doi.org/10.1105/tpc.105.031542

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Lee C, O’Neill MA, Tsumuraya Y, Darvill AG, Ye ZH (2007) The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol 48(11):1624–1634. https://doi.org/10.1093/pcp/pcm135

    CAS  CrossRef  PubMed  Google Scholar 

  11. Lee C, Zhong R, Ye ZH (2012) Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant Cell Physiol 53(1):135–143. https://doi.org/10.1093/pcp/pcr158

    CAS  CrossRef  PubMed  Google Scholar 

  12. Pena MJ, Zhong R, Zhou GK, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye ZH (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19(2):549–563. https://doi.org/10.1105/tpc.106.049320

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Wu AM, Hornblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol 153(2):542–554. https://doi.org/10.1104/pp.110.154971

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Bouton S, Leboeuf E, Mouille G, Leydecker MT, Talbotec J, Granier F, Lahaye M, Hofte H, Truong HN (2002) QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14(10):2577–2590

    CAS  CrossRef  Google Scholar 

  15. Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15(9):1115–1127. https://doi.org/10.1101/gad.879101

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9(5):689–701. https://doi.org/10.1105/tpc.9.5.689

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Eudes A, Sathitsuksanoh N, Baidoo EE, George A, Liang Y, Yang F, Singh S, Keasling JD, Simmons BA, Loque D (2015) Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnol J 13(9):1241–1250. https://doi.org/10.1111/pbi.12310

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344(6179):90–93. https://doi.org/10.1126/science.1250161

    CAS  CrossRef  PubMed  Google Scholar 

  19. Zhang K, Bhuiya MW, Pazo JR, Miao Y, Kim H, Ralph J, Liu CJ (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24(7):3135–3152. https://doi.org/10.1105/tpc.112.101287

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Ratke C, Pawar PM, Balasubramanian VK, Naumann M, Duncranz ML, Derba-Maceluch M, Gorzsas A, Endo S, Ezcurra I, Mellerowicz EJ (2015) Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification. Plant Biotechnol 13(1):26–37. https://doi.org/10.1111/pbi.12232

    CAS  CrossRef  Google Scholar 

  21. Pawar PM, Derba-Maceluch M, Chong SL, Gomez LD, Miedes E, Banasiak A, Ratke C, Gaertner C, Mouille G, McQueen-Mason SJ, Molina A, Sellstedt A, Tenkanen M, Mellerowicz EJ (2016) Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose. Plant Biotechnol 14(1):387–397. https://doi.org/10.1111/pbi.12393

    CAS  CrossRef  Google Scholar 

  22. Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V, Bellincampi D, Cervone F, De Lorenzo G (2008) Transgenic expression of a fungal endo-polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol 146(2):669–681. https://doi.org/10.1104/pp.107.109686

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Pogorelko G, Lionetti V, Fursova O, Sundaram RM, Qi M, Whitham SA, Bogdanove AJ, Bellincampi D, Zabotina OA (2013) Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens. Plant Physiol 162(1):9–23. https://doi.org/10.1104/pp.113.214460

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Latha Gandla M, Derba-Maceluch M, Liu X, Gerber L, Master ER, Mellerowicz EJ, Jonsson LJ (2015) Expression of a fungal glucuronoyl esterase in Populus: effects on wood properties and saccharification efficiency. Phytochemistry 112:210–220. https://doi.org/10.1016/j.phytochem.2014.06.002

    CAS  CrossRef  PubMed  Google Scholar 

  25. Tsai AY, Canam T, Gorzsas A, Mellerowicz EJ, Campbell MM, Master ER (2012) Constitutive expression of a fungal glucuronoyl esterase in Arabidopsis reveals altered cell wall composition and structure. Plant Biotechnol 10(9):1077–1087. https://doi.org/10.1111/j.1467-7652.2012.00735.x

    CAS  CrossRef  Google Scholar 

  26. Rudsander U, Denman S, Raza S, Teeri TT (2003) Molecular features of Family GH9 cellulases in hybrid Aspen and the filamentous fungus Phanerochaete chrysosporium. J Appl Glycosci 50(2):253–256. https://doi.org/10.5458/jag.50.253

    CAS  CrossRef  Google Scholar 

  27. Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193–195

    CAS  CrossRef  Google Scholar 

  28. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204(3):383–396. https://doi.org/10.1007/BF00331014

    CAS  CrossRef  Google Scholar 

  29. Chong SL, Derba-Maceluch M, Koutaniemi S, Gomez LD, McQueen-Mason SJ, Tenkanen M, Mellerowicz EJ (2015) Active fungal GH115 alpha-glucuronidase produced in Arabidopsis thaliana affects only the UX1-reactive glucuronate decorations on native glucuronoxylans. BMC Biotechnol 15:56. https://doi.org/10.1186/s12896-015-0154-8

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. In: Wang K (ed) Agrobacterium protocols. Humana Press, Totowa, NJ, pp 43–54. https://doi.org/10.1385/1-59745-130-4:43

    CrossRef  Google Scholar 

  31. Nilsson O, Aldén T, Sitbon F, Little CHA, Chalupa V, Sandberg G, Olsson O (1992) Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgenic Res 1(5):209–220. https://doi.org/10.1007/bf02524751

    CAS  CrossRef  Google Scholar 

  32. Pogorelko G, Fursova O, Lin M, Pyle E, Jass J, Zabotina OA (2011) Post-synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast. Plant Mol Biol 77(4–5):433–445. https://doi.org/10.1007/s11103-011-9822-9

    CAS  CrossRef  PubMed  Google Scholar 

  33. Hestrin S (1949) The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J Biol Chem 180(1):249–261

    CAS  PubMed  Google Scholar 

  34. Spanikova S, Biely P (2006) Glucuronoyl esterase—novel carbohydrate esterase produced by Schizophyllum commune. FEBS Lett 580(19):4597–4601. https://doi.org/10.1016/j.febslet.2006.07.033

    CAS  CrossRef  PubMed  Google Scholar 

  35. Biely P, Mastihubova M, Cote GL, Greene RV (2003) Mode of action of acetylxylan esterase from Streptomyces lividans: a study with deoxy and deoxy-fluoro analogues of acetylated methyl beta-d-xylopyranoside. Biochim Biophys Acta 1622(2):82–88

    CAS  CrossRef  Google Scholar 

  36. Sunner H, Charavgi MD, Olsson L, Topakas E, Christakopoulos P (2015) Glucuronoyl esterase screening and characterization assays utilizing commercially available benzyl glucuronic acid ester. Molecules 20(10):17807–17817. https://doi.org/10.3390/molecules201017807

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Takahashi J, Rudsander UJ, Hedenstrom M, Banasiak A, Harholt J, Amelot N, Immerzeel P, Ryden P, Endo S, Ibatullin FM, Brumer H, del Campillo E, Master ER, Scheller HV, Sundberg B, Teeri TT, Mellerowicz EJ (2009) KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems. Plant Cell Physiol 50(6):1099–1115. https://doi.org/10.1093/pcp/pcp062

    CAS  CrossRef  PubMed  Google Scholar 

  38. Klose H, Gunl M, Usadel B, Fischer R, Commandeur U (2015) Cell wall modification in tobacco by differential targeting of recombinant endoglucanase from Trichoderma reesei. BMC Plant Biol 15:54. https://doi.org/10.1186/s12870-015-0443-3

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem 51(21):6178–6183. https://doi.org/10.1021/jf034320o

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Emma Master and Dr. Satoshi Endo for their advice on the vector cloning strategy and Veronica Bourquin for sharing her experience in plant tissue culture techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Derba-Maceluch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Derba-Maceluch, M., Mellerowicz, E.J. (2020). Expression of Cell Wall–Modifying Enzymes in Aspen for Improved Lignocellulose Processing. In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 2149. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0621-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0621-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0619-3

  • Online ISBN: 978-1-0716-0621-6

  • eBook Packages: Springer Protocols