Skip to main content

Formation of Cellulose-Based Composites with Hemicelluloses and Pectins Using Komagataeibacter Fermentation

Part of the Methods in Molecular Biology book series (MIMB,volume 2149)

Abstract

Komagataeibacter xylinus synthesizes cellulose in an analogous fashion to plants. Through fermentation of K. xylinus in media containing cell wall polysaccharides from the hemicellulose and/or pectin families, composites with cellulose can be produced. These serve as general models for the assembly, structure, and properties of plant cell walls. By studying structure/property relationships of cellulose composites, the effects of defined hemicellulose and/or pectin polysaccharide structures can be investigated. The macroscopic nature of the composites also allows composite mechanical properties to be characterized.

The method for producing cellulose-based composites involves reviving and then culturing K. xylinus in the presence of desired hemicelluloses and/or pectins. Different conditions are required for construction of hemicellulose- and pectin-containing composites. Fermentation results in a floating mat or pellicle of cellulose-based composite that can be recovered, washed, and then studied under hydrated conditions without any need for intermediate drying.

Key words

  • Arabinoxylan
  • β-glucan
  • Composites
  • Gluconacetobacter xylinus
  • Hemicellulose
  • Komagataeibacter xylinus
  • Pectin
  • Plant cell wall
  • Cellulose
  • Xyloglucan

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0621-6_5
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0621-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brown RM (1989) Bacterial cellulose. In: Phillips GO, Kennedy JF, Williams PA (eds) Cellulose: structural and functional aspects. Ellis Horwood Ltd, New York, pp 145–151

    Google Scholar 

  2. Martínez-Sanz M, Mikkelsen D, Flanagan B, Gidley MJ, Gilbert E (2016) Multi-scale model for the hierarchical architecture of native cellulose hydrogels. Carbohydr Polym 147:542–555

    CrossRef  Google Scholar 

  3. Whitney SEC, Brigham JE, Darke A, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J 8:491–504

    CAS  CrossRef  Google Scholar 

  4. McCann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant-cell wall. J Cell Sci 96:323–334

    Google Scholar 

  5. Whitney SEC, Gidley MJ, McQueen-Mason SJ (2000) Probing expansin action using cellulose/hemicellulose composites. Plant J 22:327–334

    CAS  CrossRef  Google Scholar 

  6. Chanliaud E, DeSilva J, Strongitharm B, Jeronimidis G, Gidley MJ (2004) Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J 38:27–37

    CAS  CrossRef  Google Scholar 

  7. Whitney SEC, Brigham JE, Darke A, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 307:299–309

    CAS  CrossRef  Google Scholar 

  8. McKenna BA, Wehr JB, Mikkelsen D, Blamey FPC, Menzies NW (2016) Aluminium effects on mechanical properties of cell wall analogues. Physiol Plant 158:382–388

    CAS  CrossRef  Google Scholar 

  9. Gu J, Catchmark JM (2013) The impact of cellulose structure on binding interactions with hemicellulose and pectin. Cellulose 20:1613–1627

    CAS  CrossRef  Google Scholar 

  10. Gu J, Catchmark JM (2014) Roles of xyloglucan and pectin on the mechanical properties of bacterial cellulose composite films. Cellulose 21:275–289

    CAS  CrossRef  Google Scholar 

  11. Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromolecules 15:2718–2724

    CAS  CrossRef  Google Scholar 

  12. Mikkelsen D, Flanagan BM, Wilson SM, Bacic A, Gidley MJ (2015) Interactions of arabinoxylan and (1,3) (1,4)-beta-glucan with cellulose networks. Biomacromolecules 16:1232–1239

    CAS  CrossRef  Google Scholar 

  13. Padayachee A, Netzel G, Netzel M, Day L, Zabaras D, Mikkelsen D, Gidley M (2012) Binding of polyphenols to plant cell wall analogues—part 1: anthocyanins. Food Chem 134:155–161

    CAS  CrossRef  Google Scholar 

  14. Padayachee A, Netzel G, Netzel M, Day L, Zabaras D, Mikkelsen D, Gidley M (2012) Binding of polyphenols to plant cell wall analogues—part 2: phenolic acids. Food Chem 135:2287–2292

    CAS  CrossRef  Google Scholar 

  15. Padayachee A, Netzel G, Netzel M, Day L, Mikkelsen D, Gidley M (2013) Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion. Food Funct 4:906–916

    CAS  CrossRef  Google Scholar 

  16. Phan ADT, Netzel G, Wang D, Flanagan B, D’Arcy B, Gidley MJ (2015) Binding of dietary polyphenols to cellulose: structural and nutritional aspects. Food Chem 171:388–396

    CAS  CrossRef  Google Scholar 

  17. Tan MSF, Rahman S, Dykes GA (2016) Pectin and xyloglucan influence the attachment of Salmonella enterica and Listeria monocytogenes to bacterial-cellulose-derived plant cell wall models. Appl Environ Microbiol 82:680–688

    CAS  CrossRef  Google Scholar 

  18. Tan MSF, Wang Y, Dykes GA (2013) Attachment of bacterial pathogens to a bacterial cellulose-derived plant cell wall model: a proof of concept. Foodborne Pathog Dis 10:992–994

    CAS  CrossRef  Google Scholar 

  19. Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215:989–996

    CAS  CrossRef  Google Scholar 

  20. McKenna BA, Mikkelsen D, Wehr JB, Gidley MJ, Menzies NW (2009) Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose 16:1047–1055

    CAS  CrossRef  Google Scholar 

  21. Lopez-Sanchez P, Cersosimo J, Wang D, Flanagan B, Stokes JR, Gidley MJ (2015) Poroelastic mechanical effects of hemicelluloses on cellulosic hydrogels under compression. PLoS One 10:e0122132

    CrossRef  Google Scholar 

  22. Lopez-Sanchez P, Rincon M, Wang D, Brulhart S, Stokes JR, Gidley MJ (2014) Micromechanics and poroelasticity of hydrated cellulose networks. Biomacromolecules 15:2274–2284

    CAS  CrossRef  Google Scholar 

  23. Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of plant cell walls. Plant Physiol 121:657–663

    CAS  CrossRef  Google Scholar 

  24. Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407

    CAS  CrossRef  Google Scholar 

  25. Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20:25–35

    CAS  CrossRef  Google Scholar 

  26. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352

    CAS  CrossRef  Google Scholar 

  27. Willey JM, Sherwood LM, Woolverton CJ (2008) Prescott, Harley, and Klein’s microbiology. McGraw-Hill, New York, p 115

    Google Scholar 

  28. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583

    CAS  CrossRef  Google Scholar 

  29. Couso RO, Ielpi L, Dankert MA (1987) A xanthan-gum-like polysaccharide from Acetobacter xylinum. J Gen Microbiol 133:2123–2135

    CAS  Google Scholar 

  30. Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The Family Acetobaceraceae: the Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter and Kozakia. In: Dwokin M (ed) The Prokaryotes: an evolving electronic resource for the microbiological community. Springer Verlag, New York, pp 163–200

    CrossRef  Google Scholar 

  31. Marga F, Morvan C, Morvan H (1995) Pectins in normal and vitreous apple microplants cultured in liquid-medium. Plant Physiol Biochem 33:81–86

    CAS  Google Scholar 

  32. Wehr JB, Menzies NW, Blamey FPC (2004) Alkali hydroxide-induced gelation of pectin. Food Hydrocolloid 18:375–378

    CAS  CrossRef  Google Scholar 

  33. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    CAS  CrossRef  Google Scholar 

  34. Schuster E, Eckardt J, Hermansson AM, Larsson A, Loren N, Altskar A, Strom A (2014) Microstructural, mechanical and mass transport properties of isotropic and capillary alginate gels. Soft Matter 10:357–366

    CAS  CrossRef  Google Scholar 

  35. Patricia Lopez-Sanchez, Marta Martinez-Sanz, Mauricio R. Bonilla, Dongjie Wang, Elliot P. Gilbert, Jason. R. Stokes, Michael. J. Gidley, (2017) Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly. Carbohydrate Polymers 162:71–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Gidley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Mikkelsen, D., Lopez-Sanchez, P., Wang, D., Gidley, M.J. (2020). Formation of Cellulose-Based Composites with Hemicelluloses and Pectins Using Komagataeibacter Fermentation. In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 2149. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0621-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0621-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0619-3

  • Online ISBN: 978-1-0716-0621-6

  • eBook Packages: Springer Protocols