Skip to main content

Techniques to Conduct Morphological and Molecular Investigations on Nematodes

  • Protocol
  • First Online:
Experimental Protocols in Biotechnology

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The intriguing variety in the form and size of roundworms leading free-living as well as parasitic life has mesmerized scientists world over. One most common happening during developmental cycle of roundworms is moulting, and this characteristic is remarkably retained irrespective of the presence or absence of intermediate hosts (direct life cycle) in the life cycle of round worms in certain specified cases. The application of fixatives, in particular, therefore becomes a challenging exercise to suit the body form at different stages of development. However, looking at the severity of pathogenic influence of animal-parasitic and plant-parasitic nematodes necessitated appropriate fixation procedures of these worms infesting separate variety of hosts. Such procedures are enumerated in the text of this chapter with meticulous details on morphology based on scanning electron microscopic examination of certain worms, wherever required. Prominent techniques with molecular applications in taxonomy of roundworms to segregate arthropod-parasitic, freshwater, marine, and soil taxa have been outlined. The methods for effective barcode analyses of these round worms from terrestrial or aquatic vertebrate hosts have been discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seinhorst JW (1962) Extraction methods for nematodes inhabiting soil. In: Murphy PW (Ed.), Progress in Soil Zoology, Butterworths, London 243–256

    Google Scholar 

  2. De Grisse AT (1969) Redescription ou modifications de quelques technique utilisées dans 1’étude des nématodes phytoparasitaires. Meded. Fac. Landb Wettens 34: 351–369

    Google Scholar 

  3. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  4. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Floyd RM, Rogers AD, Lambshead PJD, Smith CR (2005) Nematode-specific PCR primers for the 18S small subunit rRNA gene. Mol Ecol Notes 5:611–612

    Article  CAS  Google Scholar 

  6. Sandeep MK (1986) Bioecology of the parasites of high altitude homeothermic host–parasite systems. I. Influence of season and temperature on infection by strobilocerci of three species of Hydatigera in Indian rat host. J Helminthol 60:15–20

    Article  Google Scholar 

  7. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  8. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  10. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rana, A., Yadav, A., Bhat, A.H., Chaubey, A.K., Malhotra, S.K. (2020). Techniques to Conduct Morphological and Molecular Investigations on Nematodes. In: Gupta, N., Gupta, V. (eds) Experimental Protocols in Biotechnology. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0607-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0607-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0606-3

  • Online ISBN: 978-1-0716-0607-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics