Skip to main content

Isolation and Culture of Arbuscular Mycorrhizal Fungi from Field Samples

  • Protocol
  • First Online:
Arbuscular Mycorrhizal Fungi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2146))

Abstract

The isolation of arbuscular mycorrhizal fungi from different land use is the starting point for selecting and producing inoculants. There are different techniques to isolate and produce large-scale arbuscular mycorrhizal fungi-based inoculum, being soil, inert substrate, and in vitro culture techniques among the most used by different biofertilizer producers. This chapter describes an active operating method to isolate and produce large-scale fungal inoculant in substrate-based manufacturing. In addition, critical parameters are presented for the optimal production of arbuscular mycorrhizal fungal inoculum. All the steps of the process are enlisted: from choosing the source of inoculum, its production, scaling, sustaining quality control, to shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular Mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271. https://doi.org/10.1139/b04-072

    Article  Google Scholar 

  3. Verzeaux J, Hirel B, Dubois F et al (2017) Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: basic and agronomic aspects. Plant Sci 264:48–56. https://doi.org/10.1016/j.plantsci.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  4. Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic (Amsterdam) 187:131–141. https://doi.org/10.1016/j.scienta.2015.03.002

    Article  Google Scholar 

  5. Sieverding E, Barea JM (1991) Perspectivas de la inoculación de sistemas de producción vegetal con hongos formadores de micorrizas VA. In: Fijación y movilización biológica de nutrientes. Consejo Superior de investigaciones Científicas, Madrid, España, pp 221–245

    Google Scholar 

  6. Wood T (1985) Commercial microbial inoculants and inoculated transplants for reclamation. J Am Soc Min Reclam 1985:314–321. https://doi.org/10.21000/JASMR85010314

    Article  Google Scholar 

  7. Sieverding E (1991) Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems. TZ-Verlagsgesellschaft mbH für Technische Zusammenarbeit, Friedland, Germany

    Google Scholar 

  8. Mensah JA, Koch AM, Antunes PM et al (2015) High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza 25:533–546. https://doi.org/10.1007/s00572-015-0631-x

    Article  CAS  PubMed  Google Scholar 

  9. Koch AM, Antunes PM, Maherali H et al (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol 214:1330–1337. https://doi.org/10.1111/nph.14465

    Article  CAS  PubMed  Google Scholar 

  10. Knegt B, Jansa J, Franken O et al (2016) Host plant quality mediates competition between arbuscular mycorrhizal fungi. Fungal Ecol 20:233–240. https://doi.org/10.1016/j.funeco.2014.09.011

    Article  Google Scholar 

  11. Feddermann N, Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza—the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol 3:1–8. https://doi.org/10.1016/j.funeco.2009.07.003

    Article  Google Scholar 

  12. Koziol L, Schultz PA, House GL et al (2018) The plant microbiome and native plant restoration: the example of native Mycorrhizal fungi. Bioscience 68:996–1006. https://doi.org/10.1093/biosci/biy125

    Article  Google Scholar 

  13. Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253–6265. https://doi.org/10.1093/jxb/erw403

    Article  CAS  PubMed  Google Scholar 

  14. Trejo Aguilar D, Ronald F-C, García R et al (2011) Effectiveness of native arbuscular mycorrhizal fungi consortia on coffee plants under greenhouse and field conditions. Rev Chil Hist Nat 84:23–31

    Article  Google Scholar 

  15. Trejo D, Bañuelos I, Bañuelos J et al (2013) Effect of diesel and biodiesel on the growth of Brachiaria decumbens inoculated with arbuscular mycorrhizal fungi. Trop Subtrop Agroecosyst 16:391–398

    Google Scholar 

  16. Quiñones-Aguilar EE, Montoya-Martínez AC, Rincón-Enriquez G et al (2016) Effectiveness of native arbuscular mycorrhizal consortia on the growth of agave inaequidens. J Soil Sci Plant Nutr 16:1052–1064

    Google Scholar 

  17. Schwartz MW, Hoeksema JD, Gehring CA et al (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515. https://doi.org/10.1111/j.1461-0248.2006.00910.x

    Article  PubMed  Google Scholar 

  18. Santander C, Aroca R, Ruiz-Lozano JM et al (2017) Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27:639–657. https://doi.org/10.1007/s00572-017-0784-x

    Article  CAS  PubMed  Google Scholar 

  19. Emam T (2016) Local soil, but not commercial AMF inoculum, increases native and non-native grass growth at a mine restoration site: soil inoculum type and method affect restoration. Restor Ecol 24:35–44. https://doi.org/10.1111/rec.12287

    Article  Google Scholar 

  20. Middleton EL, Richardson S, Koziol L et al (2015) Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere 6:art276. https://doi.org/10.1890/ES15-00152.1

    Article  Google Scholar 

  21. Rowe HI, Brown CS, Claassen VP (2007) Comparisons of Mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restor Ecol 15:44–52. https://doi.org/10.1111/j.1526-100X.2006.00188.x

    Article  Google Scholar 

  22. IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16. https://doi.org/10.1007/s00572-010-0337-z

    Article  CAS  PubMed  Google Scholar 

  23. Ceballos I, Ruiz M, Fernández C et al (2013) The in vitro mass-produced model Mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One 8:e70633. https://doi.org/10.1371/journal.pone.0070633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. von Alten H, Blal B, Dodd JC et al (2002) Quality control of arbuscular mycorrhizal fungi inoculum in Europe. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser Basel, Basel, pp 281–296

    Chapter  Google Scholar 

  25. Huising EJ, Coe R, Cares JE et al (2012) Diseño y estrategias de muestreo para la evaluación d ela biodiversidad del suelo. In: FMS M, Huising EJ, Bignell DE (eds) A handbook of tropical soil biology: sampling and characterization of below-ground biodiversity, 1st edn. Routledge, London; Sterling, VA, pp 53–90

    Google Scholar 

  26. Durand L, Lazos E (2004) Colonization and tropical deforestation in the sierra Santa Marta, southern Mexico. Environ Conserv 31:11–21. https://doi.org/10.1017/S0376892904001006

    Article  Google Scholar 

  27. Rech EL, Vianna GR, Aragão FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418. https://doi.org/10.1038/nprot.2008.9

    Article  CAS  PubMed  Google Scholar 

  28. Gardemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  29. Sieverding E (1983) Manual de métodos para la investigación de la micorriza vesículo-arbuscular en el laboratorio. CIAT, Cali, Colombia

    Google Scholar 

  30. Giovannetti M, Mosse B (1979) An evaluation techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  31. Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040. https://doi.org/10.1139/b92-253

    Article  Google Scholar 

  32. Carreón-Abud Y, Jerónimo-Treviño E, Beltrán-Nambo M de los Á et al (2013) Aislamiento y propagación de cultivos puros de hongos micorrízicos arbusculares provenientes de huertas de aguacate con diferente manejo agrícola por la técnica de minirizotrón. Rev Mex Mico 37:29–39

    Google Scholar 

  33. Katan J (1981) Solar heating (Solarization) of soil for control of Soilborne pests. Annu Rev Phytopathol 19:211–236. https://doi.org/10.1146/annurev.py.19.090181.001235

    Article  Google Scholar 

  34. Priha O, Smolander A (1999) Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biol Biochem 31:965–977. https://doi.org/10.1016/S0038-0717(99)00006-1

    Article  CAS  Google Scholar 

  35. Declerck S, Risede J-M, Delvaux B (2002) Greenhouse response of micropropagated bananas inoculated with in vitro monoxenically produced arbuscular mycorrhizal fungi. Sci. Hortic. (Amsterdam, Neth.) 93:301–309. https://doi.org/10.1016/S0304-4238(01)00347-8

    Article  Google Scholar 

  36. Kokkoris V, Miles T, Hart MM (2019) The role of in vitro cultivation on asymbiotic trait variation in a single species of arbuscular mycorrhizal fungus. Fungal Biol 123(4):307–317. https://doi.org/10.1016/j.funbio.2019.01.005

    Article  PubMed  Google Scholar 

  37. Engelmoer DJP, Behm JE, Kiers ET (2014) Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol 23:1584–1593. https://doi.org/10.1111/mec.12451

    Article  CAS  PubMed  Google Scholar 

  38. Pandey R, Garg N (2017) Arbuscular Mycorrhizal symbiosis: genetic and functional diversity. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza—eco-physiology, secondary metabolites, Nanomaterials. Springer International Publishing, Cham, pp 149–181

    Chapter  Google Scholar 

  39. Schüßler A, Krüger C, Urgiles N (2016) Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. Mycorrhiza 26:199–207. https://doi.org/10.1007/s00572-015-0659-y

    Article  PubMed  Google Scholar 

  40. Pel R, Dupin S, Schat H et al (2018) Growth benefits provided by different arbuscular mycorrhizal fungi to Plantago lanceolata depend on the form of available phosphorus. Eur J Soil Biol 88:89–96. https://doi.org/10.1016/j.ejsobi.2018.07.004

    Article  CAS  Google Scholar 

  41. Trejo-Aguilar D, Lara-Capistrán L, Maldonado-Mendoza IE et al (2013) Loss of arbuscular mycorrhizal fungal diversity in trap cultures during long-term subculturing. IMA Fungus 4:161–167. https://doi.org/10.5598/imafungus.2013.04.02.01

    Article  PubMed  PubMed Central  Google Scholar 

  42. Trejo D, Barois I, Sangabriel-Conde W (2016) Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi. Agrofor Syst 90:265–279. https://doi.org/10.1007/s10457-015-9852-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankfull to Dra. Isabelle Barois, Project Coordinator for Mexico of “Conservation and Sustainable Management of Below ground Biodiversity” BGBD financed by GEF-UNEP (GF/2715-02-4517- GF/1030-02-05) 2002-2008, for her comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Banuelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trejo-Aguilar, D., Banuelos, J. (2020). Isolation and Culture of Arbuscular Mycorrhizal Fungi from Field Samples. In: Ferrol, N., Lanfranco, L. (eds) Arbuscular Mycorrhizal Fungi. Methods in Molecular Biology, vol 2146. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0603-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0603-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0602-5

  • Online ISBN: 978-1-0716-0603-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics