Skip to main content

Formation of Corneal Stromal-Like Assemblies Using Human Corneal Fibroblasts and Macromolecular Crowding

  • Protocol
  • First Online:
Corneal Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2145))

Abstract

Tissue engineering by self-assembly allows for the formation of living tissue substitutes, using the cells’ innate capability to produce and deposit tissue-specific extracellular matrix. However, in order to develop extracellular matrix-rich implantable devices, prolonged culture time is required in traditionally utilized dilute ex vivo microenvironments. Macromolecular crowding, by imitating the in vivo tissue density, dramatically accelerates biological processes, resulting in enhanced and accelerated extracellular matrix deposition. Herein, we describe the ex vivo formation of corneal stromal-like assemblies using human corneal fibroblasts and macromolecular crowding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fini ME, Stramer BM (2005) How the cornea heals: cornea-specific repair mechanisms affecting surgical outcomes. Cornea 24(8 Suppl):S2–S11

    Article  Google Scholar 

  2. Radner W, Zehetmayer M, Aufreiter R, Mallinger R (1998) Interlacing and cross-angle distribution of collagen lamellae in the human cornea. Cornea 17(5):537–543

    Article  CAS  Google Scholar 

  3. Fini ME (1999) Keratocyte and fibroblast phenotypes in the repairing cornea. Prog Retin Eye Res 18(4):529–551

    Article  CAS  Google Scholar 

  4. Hay ED (1980) Development of the vertebrate cornea. Int Rev Cytol 63:263–322

    Article  CAS  Google Scholar 

  5. Kumar P, Pandit A, Zeugolis D (2016) Progress in corneal stromal repair: from tissue grafts and biomaterials to modular supramolecular tissue-like assemblies. Adv Mater 28(27):5381–5399. https://doi.org/10.1002/adma.201503986

    Article  CAS  PubMed  Google Scholar 

  6. Guillame-Gentil O, Semenov O, Roca AS, Groth T, Zahn R, Voros J, Zenobi-Wong M (2010) Engineering the extracellular environment: strategies for building 2d and 3d cellular structures. Adv Mater 22(48):5443–5462. https://doi.org/10.1002/adma.201001747

    Article  CAS  PubMed  Google Scholar 

  7. Peck M, Dusserre N, McAllister TN, L’Heureux N (2011) Tissue engineering by self-assembly. Mater Today 14(5):218–224. https://doi.org/10.1016/S1369-7021(11)70117-1

    Article  CAS  Google Scholar 

  8. Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118(Pt 7):1341–1353. https://doi.org/10.1242/jcs.01731

    Article  CAS  PubMed  Google Scholar 

  9. Sorushanova A, Delgado L, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen A, Bayon Y, Pandit A, Raghunath M, Zeugolis D (2019) The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater 31(1):e1801651. https://doi.org/10.1002/adma.201801651

    Article  CAS  PubMed  Google Scholar 

  10. Kumar P, Satyam A, Fan X, Collin E, Rochev Y, Rodriguez BJ, Gorelov A, Dillon S, Joshi L, Raghunath M, Pandit A, Zeugolis DI (2015) Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies. Sci Rep 5:8729. https://doi.org/10.1038/srep08729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar P, Satyam A, Fan X, Rochev Y, Rodriguez BJ, Gorelov A, Joshi L, Raghunath M, Pandit A, Zeugolis DI (2015) Accelerated development of supramolecular corneal stromal-like assemblies from corneal fibroblasts in the presence of macromolecular crowders. Tissue Eng Part C Methods 21(7):660–670. https://doi.org/10.1089/ten.TEC.2014.0387

    Article  CAS  PubMed  Google Scholar 

  12. Graceffa V, Zeugolis D (2019) Carrageenan enhances chondrogenesis and osteogenesis in human bone marrow stem cell culture. Eur Cell Mater 37:310–332. https://doi.org/10.22203/eCM.v037a19

    Article  CAS  PubMed  Google Scholar 

  13. Graceffa V, Zeugolis D (2019) Macromolecular crowding as a means to assess the effectiveness of chondrogenic media. J Tissue Eng Regen Med 13(2):217–231. https://doi.org/10.1002/term.2783

    Article  CAS  PubMed  Google Scholar 

  14. Cigognini D, Gaspar D, Kumar P, Satyam A, Alagesan S, Sanz-Nogues C, Griffin M, O'Brien T, Pandit A, Zeugolis DI (2016) Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - a step closer to physiologically relevant in vitro organogenesis. Sci Rep 6:30746. https://doi.org/10.1038/srep30746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Satyam A, Kumar P, Fan X, Gorelov A, Rochev Y, Joshi L, Peinado H, Lyden D, Thomas B, Rodriguez B, Raghunath M, Pandit A, Zeugolis D (2014) Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. Adv Mater 26(19):3024–3034. https://doi.org/10.1002/adma.201304428

    Article  CAS  PubMed  Google Scholar 

  16. Gaspar D, Fuller K, Zeugolis D (2019) Polydispersity and negative charge are key modulators of extracellular matrix deposition under macromolecular crowding conditions. Acta Biomater 88:197–210. https://doi.org/10.1016/j.actbio.2019.02.050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported from: Science Foundation Ireland, Career Development Award Programme (grant agreement number: 15/CDA/3629) and Science Foundation Ireland and the European Regional Development Fund (grant agreement number: 13/RC/2073). Mehmet Gürdal was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK), Science Fellowships and Grant Programmes Department (BİDEB), Programme of 2214-A Ph.D. Research Scholarship for Abroad. The authors have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios I. Zeugolis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gürdal, M., Ercan, G., Zeugolis, D.I. (2020). Formation of Corneal Stromal-Like Assemblies Using Human Corneal Fibroblasts and Macromolecular Crowding. In: Ahearne, M. (eds) Corneal Regeneration. Methods in Molecular Biology, vol 2145. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0599-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0599-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0598-1

  • Online ISBN: 978-1-0716-0599-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics