Skip to main content

A Guide to the Development of Human CorneaOrganoids from Induced Pluripotent Stem Cells in Culture

  • Protocol
  • First Online:
Corneal Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2145))

Abstract

The cornea is the outermost transparent and refractive barrier surface of the eye necessary for vision. Development of the cornea involves the coordinated production of extracellular matrix, epithelial differentiation, and endothelial cell expansion to produce a highly transparent tissue. Here we describe the production of multilayered three-dimensional organoids from human-induced pluripotent stem cells. These organoids have the potential for multiple downstream applications which are currently unattainable using traditional in vitro techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cotsarelis G, Cheng SZ, Dong G et al (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    Article  CAS  Google Scholar 

  2. Lavker RM, Tseng SCG, Sun T-T (2004) Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp Eye Res 78:433–446

    Article  CAS  Google Scholar 

  3. Scott S-G, Jun AS, Chakravarti S (2011) Sphere formation from corneal keratocytes and phenotype specific markers. Exp Eye Res 93:898–905. https://doi.org/10.1016/j.exer.2011.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lwigale PY (2015) Corneal development: different cells from a common progenitor. Prog Mol Biol Transl Sci 134:43–59. https://doi.org/10.1016/bs.pmbts.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  5. Graw J (2010) Eye development. Curr Top Dev Biol 90:343–386. https://doi.org/10.1016/S0070-2153(10)90010-0

    Article  PubMed  Google Scholar 

  6. Hassell JR, Birk DE (2010) The molecular basis of corneal transparency. Exp Eye Res 91:326–335. https://doi.org/10.1016/j.exer.2010.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carey BW, Markoulaki S, Hanna J et al (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci 106:157–162. https://doi.org/10.1073/pnas.0811426106

    Article  PubMed  Google Scholar 

  8. Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56. https://doi.org/10.1038/nature09941

    Article  CAS  PubMed  Google Scholar 

  9. Nakano T, Ando S, Takata N et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785. https://doi.org/10.1016/j.stem.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  10. Zhong X, Gutierrez C, Xue T et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:4047. https://doi.org/10.1038/ncomms5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vergara MN, Flores-Bellver M, Aparicio-Domingo S et al (2017) Three-dimensional automated reporter quantification (3D-ARQ) technology enables quantitative screening in retinal organoids. Development 144:3698–3705. https://doi.org/10.1242/dev.146290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eldred MK, Charlton-Perkins M, Muresan L, Harris WA (2017) Self-organising aggregates of zebrafish retinal cells for investigating mechanisms of neural lamination. Development 144:1097–1106. https://doi.org/10.1242/dev.142760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maruotti J, Wahlin K, Gorrell D et al (2013) A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med 2:341–354. https://doi.org/10.5966/sctm.2012-0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wahlin KJ, Maruotti J, Zack DJ (2014) Modeling retinal dystrophies using patient-derived induced pluripotent stem cells. Adv Exp Med Biol 801:157–164. https://doi.org/10.1007/978-1-4614-3209-8_20

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wahlin KJ, Maruotti JA, Sripathi SR et al (2017) Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci Rep 7:766. https://doi.org/10.1038/s41598-017-00774-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de la Torre RA MG, Nieto-Nicolau N, Morales-Pastor A, Casaroli-Marano RP (2017) Determination of the culture time point to induce corneal epithelial differentiation in induced pluripotent stem cells. Transplant Proc 49:2292–2295. https://doi.org/10.1016/j.transproceed.2017.09.047

    Article  Google Scholar 

  17. Joseph R, Srivastava OP, Pfister RR (2014) Generation of induced pluripotent stem cells from normal and keratoconus corneal fibroblasts using viral- and non-viral methods. Invest Ophthalmol Vis Sci 55:523–523

    Article  Google Scholar 

  18. Zhao JJ, Afshari NA (2016) Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Invest Ophthalmol Vis Sci 57:6878–6884. https://doi.org/10.1167/iovs.16-20024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayashi R, Ishikawa Y, Sasamoto Y et al (2016) Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531(7594):376–380. https://doi.org/10.1038/nature17000

    Article  CAS  PubMed  Google Scholar 

  20. Foster JW, Wahlin K, Adams SM et al (2017) Cornea organoids from human induced pluripotent stem cells. Sci Rep 7:41286. https://doi.org/10.1038/srep41286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH EY026104 (SC) and R00EY024648 (KW).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karl J. Wahlin or Shukti Chakravarti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Foster, J.W., Wahlin, K.J., Chakravarti, S. (2020). A Guide to the Development of Human CorneaOrganoids from Induced Pluripotent Stem Cells in Culture. In: Ahearne, M. (eds) Corneal Regeneration. Methods in Molecular Biology, vol 2145. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0599-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0599-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0598-1

  • Online ISBN: 978-1-0716-0599-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics