Skip to main content

In Vitro Expansion of Corneal Endothelial Cells for Transplantation

  • Protocol
  • First Online:
Corneal Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2145))

Abstract

The corneal endothelium forms a leaky barrier between the corneal stroma and the aqueous humor of the anterior chamber. This cell monolayer maintains the corneal stroma in a state of relative dehydration, a process called deturgescence, which is required in order to obtain corneal stromal transparency. Endothelial dysfunctions lead to visual impairment that ultimately can only be treated surgically via the corneal transplantation of a functional endothelium. Shortages of corneas suitable for transplantation has motivated research toward new alternatives involving in vitro corneal endothelial cell (CEC) expansion.

This chapter describes current methods that allow isolate and culture CECs. In brief, Descemet membrane is peeled out of the cornea and digested in order to obtain CECs. Cells are then seeded and cultured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonanno JA (2003) Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog Retin Eye Res 22(1):69–94

    Article  CAS  Google Scholar 

  2. Joyce NC, Harris DL, Mello DM (2002) Mechanisms of mitotic inhibition in corneal endothelium: Contact inhibition and tgf-beta2. Invest Ophthalmol Vis Sci 43(7):2152–2159

    PubMed  Google Scholar 

  3. Yoshida K, Kase S, Nakayama K, Nagahama H, Harada T, Ikeda H, Harada C, Imaki J, Ohgami K, Shiratori K, Ilieva IB, Ohno S, Nishi S, Nakayama KI (2004) Involvement of p27kip1 in the proliferation of the developing corneal endothelium. Invest Ophthalmol Vis Sci 45(7):2163–2167

    Article  Google Scholar 

  4. Matsuda M, Sawa M, Edelhauser HF, Bartels SP, Neufeld AH, Kenyon KR (1985) Cellular migration and morphology in corneal endothelial wound repair. Invest Ophthalmol Vis Sci 26(4):443–449

    CAS  PubMed  Google Scholar 

  5. Edelhauser HF (2006) The balance between corneal transparency and edema: The proctor lecture. Invest Ophthalmol Vis Sci 47(5):1754–1767. https://doi.org/10.1167/iovs.05-1139

    Article  PubMed  Google Scholar 

  6. American Academy of Opthalmology A (1997) Corneal endothelial photography - three~year revision. Ophthalmology 104(8):1360–1365

    Article  Google Scholar 

  7. Talajic JC, Straiko MD, Terry MA (2013) Descemet’s stripping automated endothelial keratoplasty: then and now. Int Ophthalmol Clin 53(2):1–20. https://doi.org/10.1097/IIO.0b013e31827eb6ba

    Article  PubMed  Google Scholar 

  8. EBAA (2016) 2015 eye banking statistical report. Washington, DC

    Google Scholar 

  9. Proulx S, Audet C, Uwamaliya J, Deschambeault A, Carrier P, Giasson CJ, Brunette I, Germain L (2009) Tissue engineering of feline corneal endothelium using a devitalized human cornea as carrier. Tissue Eng Part A 15(7):1709–1718. https://doi.org/10.1089/ten.tea.2008.0208

    Article  CAS  PubMed  Google Scholar 

  10. Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, Yamamoto Y, Nakamura T, Inatomi T, Bush J, Toda M, Hagiya M, Yokota I, Teramukai S, Sotozono C, Hamuro J (2018) Injection of cultured cells with a rock inhibitor for bullous keratopathy. N Engl J Med 378(11):995–1003. https://doi.org/10.1056/NEJMoa1712770

    Article  CAS  PubMed  Google Scholar 

  11. Li W, Sabater AL, Chen YT, Hayashida Y, Chen SY, He H, Tseng SC (2007) A novel method of isolation, preservation, and expansion of human corneal endothelial cells. Invest Ophthalmol Vis Sci 48(2):614–620. https://doi.org/10.1167/iovs.06-1126

    Article  PubMed  PubMed Central  Google Scholar 

  12. Senoo T, Obara Y, Joyce NC (2000) Edta: a promoter of proliferation in human corneal endothelium. Invest Ophthalmol Vis Sci 41(10):2930–2935

    CAS  PubMed  Google Scholar 

  13. Engler C, Kelliher C, Speck CL, Jun AS (2009) Assessment of attachment factors for primary cultured human corneal endothelial cells. Cornea 28(9):1050–1054. https://doi.org/10.1097/ICO.0b013e3181a165a3

    Article  PubMed  Google Scholar 

  14. Chng Z, Peh GS, Herath WB, Cheng TY, Ang HP, Toh KP, Robson P, Mehta JS, Colman A (2013) High throughput gene expression analysis identifies reliable expression markers of human corneal endothelial cells. PLoS One 8(7):e67546. https://doi.org/10.1371/journal.pone.0067546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartakova A, Alvarez-Delfin K, Weisman AD, Salero E, Raffa GA, Merkhofer RM Jr, Kunzevitzky NJ, Goldberg JL (2016) Novel identity and functional markers for human corneal endothelial cells. Invest Ophthalmol Vis Sci 57(6):2749–2762. https://doi.org/10.1167/iovs.15-18826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ueno M, Asada K, Toda M, Schlotzer-Schrehardt U, Nagata K, Montoya M, Sotozono C, Kinoshita S, Hamuro J (2016) Gene signature-based development of elisa assays for reproducible qualification of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci 57(10):4295–4305. https://doi.org/10.1167/iovs.16-19806

    Article  CAS  PubMed  Google Scholar 

  17. Cheong YK, Ngoh ZX, Peh GS, Ang HP, Seah XY, Chng Z, Colman A, Mehta JS, Sun W (2013) Identification of cell surface markers glypican-4 and cd200 that differentiate human corneal endothelium from stromal fibroblasts. Invest Ophthalmol Vis Sci 54(7):4538–4547. https://doi.org/10.1167/iovs.13-11754

    Article  CAS  PubMed  Google Scholar 

  18. Hamuro J, Toda M, Asada K, Hiraga A, Schlotzer-Schrehardt U, Montoya M, Sotozono C, Ueno M, Kinoshita S (2016) Cell homogeneity indispensable for regenerative medicine by cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci 57(11):4749–4761. https://doi.org/10.1167/iovs.16-19770

    Article  CAS  PubMed  Google Scholar 

  19. Okumura N, Hirano H, Numata R, Nakahara M, Ueno M, Hamuro J, Kinoshita S, Koizumi N (2014) Cell surface markers of functional phenotypic corneal endothelial cells. Invest Ophthalmol Vis Sci 55(11):7610–7618. https://doi.org/10.1167/iovs.14-14980

    Article  CAS  PubMed  Google Scholar 

  20. Okumura N, Ishida N, Kakutani K, Hongo A, Hiwa S, Hiroyasu T, Koizumi N (2017) Development of cell analysis software for cultivated corneal endothelial cells. Cornea 36(11):1387–1394. https://doi.org/10.1097/ICO.0000000000001317

    Article  PubMed  Google Scholar 

  21. Toda M, Ueno M, Hiraga A, Asada K, Montoya M, Sotozono C, Kinoshita S, Hamuro J (2017) Production of homogeneous cultured human corneal endothelial cells indispensable for innovative cell therapy. Invest Ophthalmol Vis Sci 58(4):2011–2020. https://doi.org/10.1167/iovs.16-20703

    Article  CAS  PubMed  Google Scholar 

  22. Peh GS, Chng Z, Ang HP, Cheng TY, Adnan K, Seah XY, George BL, Toh KP, Tan DT, Yam GH, Colman A, Mehta JS (2015) Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant 24(2):287–304. https://doi.org/10.3727/096368913X675719

    Article  PubMed  Google Scholar 

  23. Beaulieu Leclerc V, Roy O, Santerre K, Proulx S (2018) Tgf-beta1 promotes cell barrier function upon maturation of corneal endothelial cells. Sci Rep 8(1):4438. https://doi.org/10.1038/s41598-018-22821-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Procurement of eyes for research was possible thanks to a partnership with Héma-Québec, the CUO Eye Bank, and a “Fonds de recherche du Québec – Santé (FRQ-S)” Vision Health Research Network (VHRN) Infrastructure Program (S.P.). I.X. was a recipient of Master Training Awards from Université Laval (Wilbrod-Bhérer), the Fondation du CHU de Québec, the LOEX Center, and the VHRN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Proulx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Santerre, K., Xu, I., Thériault, M., Proulx, S. (2020). In Vitro Expansion of Corneal Endothelial Cells for Transplantation. In: Ahearne, M. (eds) Corneal Regeneration. Methods in Molecular Biology, vol 2145. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0599-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0599-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0598-1

  • Online ISBN: 978-1-0716-0599-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics