Abstract
The molecular players regulating the axon degeneration pathway have been identified using in vitro experimental models. Here, we describe an in vitro assay to assess the axonal fragmentation induced by mechanical injury to axons in cultured mouse embryonic dorsal root ganglion (DRG) neurons. DRG neurons are pseudounipolar and therefore suitable for an assay of axonal degeneration after injury. In addition, the time course of the axonal fragmentation is stereotyped, enabling the identification of reagents that either expedite or impede the degeneration process. With an image-based quantification method, the in vitro degeneration assay can be utilized as a platform supporting high-throughput screens for pharmacological or genetic reagents delaying axon degeneration.
Key words
- Axon degeneration
- In vitro assay
- Dorsal root ganglion
- Axotomy
- Image-based screening
- Neurodegeneration
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Gerdts J, Summers DW, Milbrandt J, DiAntonio A (2016) Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron 89:449–460. https://doi.org/10.1016/j.neuron.2015.12.023
Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18. https://doi.org/10.1083/jcb.201108111
Hill CS, Coleman MP, Menon DK (2016) Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci 39:311–324. https://doi.org/10.1016/J.TINS.2016.03.002
Pan YA, Misgeld T, Lichtman JW, Sanes JR (2003) Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J Neurosci 23:11479–11488
Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro-Oncology 14:iv45–iv54. https://doi.org/10.1093/neuonc/nos203
Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898. https://doi.org/10.1038/nrn1788
Cashman CR, Höke A (2015) Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 596:33–50. https://doi.org/10.1016/J.NEULET.2015.01.048
Brennan KM, Bai Y, Shy ME (2015) Demyelinating CMT–what’s known, what’s new and what’s in store? Neurosci Lett 596:14–26. https://doi.org/10.1016/J.NEULET.2015.01.059
Burke RE, O’Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83. https://doi.org/10.1016/j.expneurol.2012.01.011
Kneynsberg A, Combs B, Christensen K et al (2017) Axonal degeneration in tauopathies: disease relevance and underlying mechanisms. Front Neurosci 11:572. https://doi.org/10.3389/fnins.2017.00572
Stoll G, Jander S, Myers RR (2002) Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripher Nerv Syst 7:13–27
Simon DJ, Weimer RM, McLaughlin T et al (2012) A caspase cascade regulating developmental axon degeneration. J Neurosci 32:17540–17553. https://doi.org/10.1523/JNEUROSCI.3012-12.2012
Simon DJ, Pitts J, Hertz NT et al (2016) Axon degeneration gated by retrograde activation of somatic pro-apoptotic signaling. Cell 164:1031–1045. https://doi.org/10.1016/J.CELL.2016.01.032
Geisler S, Doan RA, Strickland A et al (2016) Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139(Pt 12):3092–3108. https://doi.org/10.1093/brain/aww251
Chen X, Rzhetskaya M, Kareva T et al (2008) Antiapoptotic and trophic effects of dominant-negative forms of dual leucine zipper kinase in dopamine neurons of the substantia nigra in vivo. J Neurosci 28:672–680. https://doi.org/10.1523/JNEUROSCI.2132-07.2008
Le Pichon CE, Meilandt WJ, Dominguez S et al (2017) Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med 9:eaag0394. https://doi.org/10.1126/scitranslmed.aag0394
Welsbie DS, Yang Z, Ge Y et al (2013) Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A 110:4045–4050. https://doi.org/10.1073/pnas.1211284110
Ferri A, Sanes JR, Coleman MP et al (2003) Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of Motoneuron disease. Curr Biol 13:669–673. https://doi.org/10.1016/s0960-9822(03)00206-9
Sajadi A, Schneider BL, Aebischer P (2004) Wlds-mediated protection of dopaminergic fibers in an animal model of Parkinson disease. Curr Biol 14:326–330. https://doi.org/10.1016/j.cub.2004.01.053
Riederer BM, Barakat-Walter I (1992) Differential distribution of two microtubule-associated proteins, MAP2 and MAP5, during chick dorsal root ganglion development in situ and in culture. Dev Brain Res 68:111–123. https://doi.org/10.1016/0165-3806(92)90253-S
Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013. https://doi.org/10.1126/science.1098014
Shin JE, Miller BR, Babetto E et al (2012) SCG10 is a JNK target in the axonal degeneration pathway. Proc Natl Acad Sci U S A 109:E3696–E3705. https://doi.org/10.1073/pnas.1216204109
Ghosh AS, Wang B, Pozniak CD et al (2011) DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity. J Cell Biol 194:751–764. https://doi.org/10.1083/jcb.201103153
Nikolaev A, McLaughlin T, O’Leary DDM, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–989. https://doi.org/10.1038/nature07767
Miller BR, Press C, Daniels RW et al (2009) A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 12:387–389. https://doi.org/10.1038/nn.2290
Sasaki Y, Vohra BPS, Lund FE, Milbrandt J (2009) Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J Neurosci 29:5525–5535. https://doi.org/10.1523/JNEUROSCI.5469-08.2009
Sasaki Y, Milbrandt J (2010) Axonal degeneration is blocked by nicotinamide mononucleotide adenylyltransferase (Nmnat) protein transduction into transected axons. J Biol Chem 285:41211–41215. https://doi.org/10.1074/jbc.C110.193904
Sasaki Y, Nakagawa T, Mao X et al (2016) NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion. Elife 5. https://doi.org/10.7554/eLife.19749
Gerdts J, Brace EJ, Sasaki Y et al (2015) Sarm1 activation triggers axon degeneration locally via NAD+ destruction. Science 348:453–457. https://doi.org/10.1126/science.1258366
Walker LJ, Summers DW, Sasaki Y et al (2017) MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. Elife 6. https://doi.org/10.7554/eLife.22540
Gerdts J, Summers DW, Sasaki Y et al (2013) Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J Neurosci 33:13569–13580. https://doi.org/10.1523/JNEUROSCI.1197-13.2013
Gerdts J, Sasaki Y, Vohra B et al (2011) Image-based screening identifies novel roles for IkappaB kinase and glycogen synthase kinase 3 in axonal degeneration. J Biol Chem 286:28011–28018. https://doi.org/10.1074/jbc.M111.250472
Acknowledgments
This work was supported by the National Research Foundation of Korea (NRF) grant to J.E.S. (NRF-2017R1C1B2008356), Health Technology R&D Project to Y.C. (HI17C1459), and BK21 Plus project of the NRF to J.E.S. and Y.C.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Shin, J.E., Cho, Y. (2020). Assessing Axonal Degeneration in Embryonic Dorsal Root Ganglion Neurons In Vitro. In: Babetto, E. (eds) Axon Degeneration. Methods in Molecular Biology, vol 2143. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0585-1_4
Download citation
DOI: https://doi.org/10.1007/978-1-0716-0585-1_4
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-0584-4
Online ISBN: 978-1-0716-0585-1
eBook Packages: Springer Protocols