Skip to main content

Assessing Axonal Degeneration in Embryonic Dorsal Root Ganglion Neurons In Vitro

  • 1483 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2143)

Abstract

The molecular players regulating the axon degeneration pathway have been identified using in vitro experimental models. Here, we describe an in vitro assay to assess the axonal fragmentation induced by mechanical injury to axons in cultured mouse embryonic dorsal root ganglion (DRG) neurons. DRG neurons are pseudounipolar and therefore suitable for an assay of axonal degeneration after injury. In addition, the time course of the axonal fragmentation is stereotyped, enabling the identification of reagents that either expedite or impede the degeneration process. With an image-based quantification method, the in vitro degeneration assay can be utilized as a platform supporting high-throughput screens for pharmacological or genetic reagents delaying axon degeneration.

Key words

  • Axon degeneration
  • In vitro assay
  • Dorsal root ganglion
  • Axotomy
  • Image-based screening
  • Neurodegeneration

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gerdts J, Summers DW, Milbrandt J, DiAntonio A (2016) Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron 89:449–460. https://doi.org/10.1016/j.neuron.2015.12.023

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18. https://doi.org/10.1083/jcb.201108111

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hill CS, Coleman MP, Menon DK (2016) Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci 39:311–324. https://doi.org/10.1016/J.TINS.2016.03.002

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pan YA, Misgeld T, Lichtman JW, Sanes JR (2003) Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J Neurosci 23:11479–11488

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro-Oncology 14:iv45–iv54. https://doi.org/10.1093/neuonc/nos203

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898. https://doi.org/10.1038/nrn1788

    CrossRef  CAS  PubMed  Google Scholar 

  7. Cashman CR, Höke A (2015) Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 596:33–50. https://doi.org/10.1016/J.NEULET.2015.01.048

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brennan KM, Bai Y, Shy ME (2015) Demyelinating CMT–what’s known, what’s new and what’s in store? Neurosci Lett 596:14–26. https://doi.org/10.1016/J.NEULET.2015.01.059

    CrossRef  CAS  PubMed  Google Scholar 

  9. Burke RE, O’Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83. https://doi.org/10.1016/j.expneurol.2012.01.011

    CrossRef  CAS  PubMed  Google Scholar 

  10. Kneynsberg A, Combs B, Christensen K et al (2017) Axonal degeneration in tauopathies: disease relevance and underlying mechanisms. Front Neurosci 11:572. https://doi.org/10.3389/fnins.2017.00572

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Stoll G, Jander S, Myers RR (2002) Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripher Nerv Syst 7:13–27

    CrossRef  PubMed  Google Scholar 

  12. Simon DJ, Weimer RM, McLaughlin T et al (2012) A caspase cascade regulating developmental axon degeneration. J Neurosci 32:17540–17553. https://doi.org/10.1523/JNEUROSCI.3012-12.2012

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simon DJ, Pitts J, Hertz NT et al (2016) Axon degeneration gated by retrograde activation of somatic pro-apoptotic signaling. Cell 164:1031–1045. https://doi.org/10.1016/J.CELL.2016.01.032

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geisler S, Doan RA, Strickland A et al (2016) Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139(Pt 12):3092–3108. https://doi.org/10.1093/brain/aww251

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Rzhetskaya M, Kareva T et al (2008) Antiapoptotic and trophic effects of dominant-negative forms of dual leucine zipper kinase in dopamine neurons of the substantia nigra in vivo. J Neurosci 28:672–680. https://doi.org/10.1523/JNEUROSCI.2132-07.2008

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Pichon CE, Meilandt WJ, Dominguez S et al (2017) Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med 9:eaag0394. https://doi.org/10.1126/scitranslmed.aag0394

    CrossRef  CAS  PubMed  Google Scholar 

  17. Welsbie DS, Yang Z, Ge Y et al (2013) Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A 110:4045–4050. https://doi.org/10.1073/pnas.1211284110

    CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Ferri A, Sanes JR, Coleman MP et al (2003) Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of Motoneuron disease. Curr Biol 13:669–673. https://doi.org/10.1016/s0960-9822(03)00206-9

  19. Sajadi A, Schneider BL, Aebischer P (2004) Wlds-mediated protection of dopaminergic fibers in an animal model of Parkinson disease. Curr Biol 14:326–330. https://doi.org/10.1016/j.cub.2004.01.053

    CrossRef  CAS  PubMed  Google Scholar 

  20. Riederer BM, Barakat-Walter I (1992) Differential distribution of two microtubule-associated proteins, MAP2 and MAP5, during chick dorsal root ganglion development in situ and in culture. Dev Brain Res 68:111–123. https://doi.org/10.1016/0165-3806(92)90253-S

    CrossRef  CAS  Google Scholar 

  21. Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013. https://doi.org/10.1126/science.1098014

    CrossRef  CAS  PubMed  Google Scholar 

  22. Shin JE, Miller BR, Babetto E et al (2012) SCG10 is a JNK target in the axonal degeneration pathway. Proc Natl Acad Sci U S A 109:E3696–E3705. https://doi.org/10.1073/pnas.1216204109

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Ghosh AS, Wang B, Pozniak CD et al (2011) DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity. J Cell Biol 194:751–764. https://doi.org/10.1083/jcb.201103153

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nikolaev A, McLaughlin T, O’Leary DDM, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–989. https://doi.org/10.1038/nature07767

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller BR, Press C, Daniels RW et al (2009) A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 12:387–389. https://doi.org/10.1038/nn.2290

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sasaki Y, Vohra BPS, Lund FE, Milbrandt J (2009) Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J Neurosci 29:5525–5535. https://doi.org/10.1523/JNEUROSCI.5469-08.2009

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sasaki Y, Milbrandt J (2010) Axonal degeneration is blocked by nicotinamide mononucleotide adenylyltransferase (Nmnat) protein transduction into transected axons. J Biol Chem 285:41211–41215. https://doi.org/10.1074/jbc.C110.193904

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sasaki Y, Nakagawa T, Mao X et al (2016) NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion. Elife 5. https://doi.org/10.7554/eLife.19749

  29. Gerdts J, Brace EJ, Sasaki Y et al (2015) Sarm1 activation triggers axon degeneration locally via NAD+ destruction. Science 348:453–457. https://doi.org/10.1126/science.1258366

  30. Walker LJ, Summers DW, Sasaki Y et al (2017) MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. Elife 6. https://doi.org/10.7554/eLife.22540

  31. Gerdts J, Summers DW, Sasaki Y et al (2013) Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J Neurosci 33:13569–13580. https://doi.org/10.1523/JNEUROSCI.1197-13.2013

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gerdts J, Sasaki Y, Vohra B et al (2011) Image-based screening identifies novel roles for IkappaB kinase and glycogen synthase kinase 3 in axonal degeneration. J Biol Chem 286:28011–28018. https://doi.org/10.1074/jbc.M111.250472

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant to J.E.S. (NRF-2017R1C1B2008356), Health Technology R&D Project to Y.C. (HI17C1459), and BK21 Plus project of the NRF to J.E.S. and Y.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongcheol Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shin, J.E., Cho, Y. (2020). Assessing Axonal Degeneration in Embryonic Dorsal Root Ganglion Neurons In Vitro. In: Babetto, E. (eds) Axon Degeneration. Methods in Molecular Biology, vol 2143. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0585-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0585-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0584-4

  • Online ISBN: 978-1-0716-0585-1

  • eBook Packages: Springer Protocols