Skip to main content

Measuring Bioenergetic Signatures of Peripheral Nerve Segments by Extracellular Flux Analysis

  • Protocol
  • First Online:
Axon Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2143))

Abstract

Changes of energy metabolism in axons and their adjacent glia as well as alterations in metabolic axon–glia cross talk are emerging as central mechanistic components underlying axon degeneration. The analysis of extracellular flux with commercial metabolic analyzers greatly facilitates the measurement of key parameters of glycolytic and mitochondrial energy metabolism in cells and tissues. In this chapter, I describe a straightforward method to capture bioenergetic profiles of acutely isolated peripheral nerve segments using the Agilent Seahorse XFe24 platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252. https://doi.org/10.1038/nature09614

    Article  CAS  PubMed  Google Scholar 

  2. Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11(4):275–283. https://doi.org/10.1038/nrn2797

    Article  CAS  PubMed  Google Scholar 

  3. Beirowski B (2013) Concepts for regulation of axon integrity by enwrapping glia. Front Cell Neurosci 7:256. https://doi.org/10.3389/fncel.2013.00256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang J, Wu Z, Renier N, Simon DJ, Uryu K, Park DS, Greer PA, Tournier C, Davis RJ, Tessier-Lavigne M (2015) Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell 160(1-2):161–176. https://doi.org/10.1016/j.cell.2014.11.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamagishi Y, Tessier-Lavigne M (2016) An atypical SCF-like Ubiquitin ligase complex promotes wallerian degeneration through regulation of axonal Nmnat2. Cell Rep 17(3):774–782. https://doi.org/10.1016/j.celrep.2016.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J (2015) SARM1 activation triggers axon degeneration locally via NAD(+) destruction. Science 348(6233):453–457. https://doi.org/10.1126/science.1258366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J (2017) The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93(6):1334–1343. e1335. https://doi.org/10.1016/j.neuron.2017.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Godzik K, Coleman MP (2015) The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury. J Mol Neurosci 55(4):865–871. https://doi.org/10.1007/s12031-014-0440-2

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Zhai Q, Chen Y, Lin E, Gu W, McBurney MW, He Z (2005) A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol 170(3):349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flatters SJ, Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122(3):245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Freeman OJ, Unwin RD, Dowsey AW, Begley P, Ali S, Hollywood KA, Rustogi N, Petersen RS, Dunn WB, Cooper GJ, Gardiner NJ (2016) Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy. Diabetes 65(1):228–238. https://doi.org/10.2337/db15-0835

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann HC, Chen W, Borzan J, Mankowski JL, Hoke A (2011) Mitochondrial dysfunction in distal axons contributes to human immunodeficiency virus sensory neuropathy. Ann Neurol 69(1):100–110. https://doi.org/10.1002/ana.22150

    Article  CAS  PubMed  Google Scholar 

  13. Lim TK, Rone MB, Lee S, Antel JP, Zhang J (2015) Mitochondrial and bioenergetic dysfunction in trauma-induced painful peripheral neuropathy. Mol Pain 11:58. https://doi.org/10.1186/s12990-015-0057-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Viader A, Golden JP, Baloh RH, Schmidt RE, Hunter DA, Milbrandt J (2011) Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function. J Neurosci 31(28):10128–10140. https://doi.org/10.1523/JNEUROSCI.0884-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beirowski B, Babetto E, Golden JP, Chen YJ, Yang K, Gross RW, Patti GJ, Milbrandt J (2014) Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance. Nat Neurosci 17(10):1351–1361. https://doi.org/10.1038/nn.3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Viader A, Sasaki Y, Kim S, Strickland A, Workman CS, Yang K, Gross RW, Milbrandt J (2013) Aberrant schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 77(5):886–898. https://doi.org/10.1016/j.neuron.2013.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim S, Maynard JC, Sasaki Y, Strickland A, Sherman DL, Brophy PJ, Burlingame AL, Milbrandt J (2016) Schwann cell O-GlcNAc glycosylation is required for myelin maintenance and axon integrity. J Neurosci 36(37):9633–9646. https://doi.org/10.1523/JNEUROSCI.1235-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448. https://doi.org/10.1038/nature11314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Mobius W, Goetze B, Jahn HM, Huang W, Steffens H, Schomburg ED, Perez-Samartin A, Perez-Cerda F, Bakhtiari D, Matute C, Lowel S, Griesinger C, Hirrlinger J, Kirchhoff F, Nave KA (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91(1):119–132. https://doi.org/10.1016/j.neuron.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  20. Mookerjee SA, Brand MD (2015) Measurement and analysis of extracellular acid production to determine glycolytic rate. J Vis Exp 106:e53464. https://doi.org/10.3791/53464

    Article  CAS  Google Scholar 

  21. Millman JR, Doggett T, Thebeau C, Zhang S, Semenkovich CF, Rajagopal R (2019) Measurement of energy metabolism in explanted retinal tissue using extracellular flux analysis. J Vis Exp 143. https://doi.org/10.3791/58626

  22. Dunham-Snary KJ, Sandel MW, Westbrook DG, Ballinger SW (2014) A method for assessing mitochondrial bioenergetics in whole white adipose tissues. Redox Biol 2:656–660. https://doi.org/10.1016/j.redox.2014.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Russell S, Wojtkowiak J, Neilson A, Gillies RJ (2017) Metabolic profiling of healthy and cancerous tissues in 2D and 3D. Sci Rep 7(1):15285. https://doi.org/10.1038/s41598-017-15325-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fried NT, Moffat C, Seifert EL, Oshinsky ML (2014) Functional mitochondrial analysis in acute brain sections from adult rats reveals mitochondrial dysfunction in a rat model of migraine. Am J Physiol Cell Physiol 307(11):C1017–C1030. https://doi.org/10.1152/ajpcell.00332.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibert Y, McGee SL, Ward AC (2013) Metabolic profile analysis of zebrafish embryos. J Vis Exp 71:e4300. https://doi.org/10.3791/4300

    Article  CAS  Google Scholar 

  26. Neville KE, Bosse TL, Klekos M, Mills JF, Weicksel SE, Waters JS, Tipping M (2018) A novel ex vivo method for measuring whole brain metabolism in model systems. J Neurosci Methods 296:32–43. https://doi.org/10.1016/j.jneumeth.2017.12.020

    Article  PubMed  Google Scholar 

  27. Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, Nollen EA, Houtkooper RH (2016) A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 11(10):1798–1816. https://doi.org/10.1038/nprot.2016.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jassim AH, Coughlin L, Harun-Or-Rashid M, Kang PT, Chen YR, Inman DM (2019) Higher Reliance on glycolysis limits glycolytic responsiveness in degenerating glaucomatous optic nerve. Mol Neurobiol. https://doi.org/10.1007/s12035-019-1576-4

Download references

Acknowledgments

This work was supported by Empire State Development Corporation for Hunter James Kelly Research Institute Grants W753 and U446; Hunter’s Hope Foundation, and Muscular Dystrophy Association Grants 23648 and 292306. I am especially grateful to Kevin Bittman (Agilent Technologies) for instrument and supplies support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Beirowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Beirowski, B. (2020). Measuring Bioenergetic Signatures of Peripheral Nerve Segments by Extracellular Flux Analysis. In: Babetto, E. (eds) Axon Degeneration. Methods in Molecular Biology, vol 2143. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0585-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0585-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0584-4

  • Online ISBN: 978-1-0716-0585-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics