Skip to main content

Evaluating Zika Virus Pathogenesis in Immunocompromised Mice

  • Protocol
  • First Online:
Zika Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2142))

Abstract

Mouse models of Zika virus (ZIKV) infection, which recapitulate certain aspects of ZIKV infection in humans, have demonstrated their utility for studying ZIKV pathogenesis and for the initial screening of antivirals, experimental therapeutics, and candidate vaccines for protective efficacy against ZIKV infection. In this chapter we outline the available mouse models and describe the evaluation of ZIKV pathogenesis in an immunocompromised mouse model of ZIKV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dick GW, Kitchen SF, Haddow AJ (1952) Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46(5):509–520

    Article  CAS  Google Scholar 

  2. Dick GW (1952) Zika virus. II. Pathogenicity and physical properties. Trans R Soc Trop Med Hyg 46(5):521–534

    Article  CAS  Google Scholar 

  3. Bearcroft WG (1956) Zika virus infection experimentally induced in a human volunteer. Trans R Soc Trop Med Hyg 50(5):442–448

    Article  CAS  Google Scholar 

  4. Simpson DI (1964) Zika virus infection in man. Trans R Soc Trop Med Hyg 58:335–338

    Article  CAS  Google Scholar 

  5. Reagan RL, Chang SC, Brueckner AL (1955) Electron micrographs of erythrocytes from Swiss albino mice infected with Zika virus. Tex Rep Biol Med 13(4):934–938

    CAS  PubMed  Google Scholar 

  6. Way JH, Bowen ET, Platt GS (1976) Comparative studies of some African arboviruses in cell culture and in mice. J Gen Virol 30(1):123–130. https://doi.org/10.1099/0022-1317-30-1-123

    Article  CAS  PubMed  Google Scholar 

  7. Bell TM, Field EJ, Narang HK (1971) Zika virus infection of the central nervous system of mice. Arch Gesamte Virusforsch 35(2):183–193

    Article  CAS  Google Scholar 

  8. Geser A, Henderson BE, Christensen S (1970) A multipurpose serological survey in Kenya. 2. Results of arbovirus serological tests. Bull World Health Organ 43(4):539–552

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Weinbren MP, Williams MC (1958) Zika virus: further isolations in the Zika area, and some studies on the strains isolated. Trans R Soc Trop Med Hyg 52(3):263–268

    Article  CAS  Google Scholar 

  10. Macnamara FN (1954) Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 48(2):139–145. https://doi.org/10.1016/0035-9203(54)90006-1

    Article  CAS  PubMed  Google Scholar 

  11. Marchette NJ, Garcia R, Rudnick A (1969) Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg 18(3):411–415. https://doi.org/10.4269/ajtmh.1969.18.411

    Article  CAS  PubMed  Google Scholar 

  12. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360(24):2536–2543. https://doi.org/10.1056/NEJMoa0805715

    Article  CAS  PubMed  Google Scholar 

  13. Faye O, Freire CC, Iamarino A, Faye O, de Oliveira JV, Diallo M, Zanotto PM, Sall AA (2014) Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl Trop Dis 8(1):e2636. https://doi.org/10.1371/journal.pntd.0002636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao-Lormeau V-M, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial A-L, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra J-C, Despres P, Fournier E, Mallet H-P, Musso D, Fontanet A, Neil J, Ghawché F (2016) Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387(10027):1531–1539. https://doi.org/10.1016/s0140-6736(16)00562-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cao-Lormeau VM, Roche C, Teissier A, Robin E, Berry AL, Mallet HP, Sall AA, Musso D (2014) Zika virus, French polynesia, South pacific, 2013. Emerg Infect Dis 20(6):1085–1086. https://doi.org/10.3201/eid2006.140138

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR (2008) Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14(8):1232–1239. https://doi.org/10.3201/eid1408.080287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cauchemez S, Besnard M, Bompard P, Dub T, Guillemette-Artur P, Eyrolle-Guignot D, Salje H, Van Kerkhove MD, Abadie V, Garel C, Fontanet A, Mallet HP (2016) Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet 387(10033):2125–2132. https://doi.org/10.1016/S0140-6736(16)00651-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR (2016) Zika virus and birth defects—reviewing the evidence for causality. N Engl J Med 374(20):1981–1987. https://doi.org/10.1056/NEJMsr1604338

    Article  CAS  PubMed  Google Scholar 

  19. Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, Nascimento JM, Brindeiro R, Tanuri A, Rehen SK (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352(6287):816–818. https://doi.org/10.1126/science.aaf6116

    Article  CAS  PubMed  Google Scholar 

  20. Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Yao B, Shin J, Zhang F, Lee EM, Christian KM, Didier RA, Jin P, Song H, Ming GL (2016) Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18(5):587–590. https://doi.org/10.1016/j.stem.2016.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coyne CB, Lazear HM (2016) Zika virus – reigniting the TORCH. Nat Rev Microbiol 14(11):707–715. https://doi.org/10.1038/nrmicro.2016.125

    Article  CAS  PubMed  Google Scholar 

  22. Turmel JM, Abgueguen P, Hubert B, Vandamme YM, Maquart M, Le Guillou-Guillemette H, Leparc-Goffart I (2016) Late sexual transmission of Zika virus related to persistence in the semen. Lancet 387(10037):2501. https://doi.org/10.1016/S0140-6736(16)30775-9

    Article  PubMed  Google Scholar 

  23. Matheron S, d’Ortenzio E, Leparc-Goffart I, Hubert B, de Lamballerie X, Yazdanpanah Y (2016) Long-lasting persistence of Zika virus in semen. Clin Infect Dis 63(9):1264. https://doi.org/10.1093/cid/ciw509

    Article  PubMed  Google Scholar 

  24. Mansuy JM, Pasquier C, Daudin M, Chapuy-Regaud S, Moinard N, Chevreau C, Izopet J, Mengelle C, Bujan L (2016) Zika virus in semen of a patient returning from a non-epidemic area. Lancet Infect Dis 16(8):894–895. https://doi.org/10.1016/S1473-3099(16)30153-0

    Article  PubMed  Google Scholar 

  25. Mansuy JM, Suberbielle E, Chapuy-Regaud S, Mengelle C, Bujan L, Marchou B, Delobel P, Gonzalez-Dunia D, Malnou CE, Izopet J, Martin-Blondel G (2016) Zika virus in semen and spermatozoa. Lancet Infect Dis 16(10):1106–1107. https://doi.org/10.1016/S1473-3099(16)30336-X

    Article  PubMed  Google Scholar 

  26. Deckard DT, Chung WM, Brooks JT, Smith JC, Woldai S, Hennessey M, Kwit N, Mead P (2016) Male-to-male sexual transmission of Zika virus—Texas, January 2016. MMWR Morb Mortal Wkly Rep 65(14):372–374. https://doi.org/10.15585/mmwr.mm6514a3

    Article  PubMed  Google Scholar 

  27. Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM (2015) Potential sexual transmission of Zika virus. Emerg Infect Dis 21(2):359–361. https://doi.org/10.3201/eid2102.141363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Foy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow AD, Lanciotti RS, Tesh RB (2011) Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis 17(5):880–882. https://doi.org/10.3201/eid1705.101939

    Article  PubMed  PubMed Central  Google Scholar 

  29. D’Ortenzio E, Matheron S, Yazdanpanah Y, de Lamballerie X, Hubert B, Piorkowski G, Maquart M, Descamps D, Damond F, Leparc-Goffart I (2016) Evidence of sexual transmission of Zika virus. N Engl J Med 374(22):2195–2198. https://doi.org/10.1056/NEJMc1604449

    Article  PubMed  Google Scholar 

  30. Julander JG, Siddharthan V (2017) Small-animal models of Zika virus. J Infect Dis 216(Suppl_10):S919–S927. https://doi.org/10.1093/infdis/jix465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pena LJ, Miranda Guarines K, Duarte Silva AJ, Sales Leal LR, Mendes Felix D, Silva A, de Oliveira SA, Junqueira Ayres CF, Junior AS, de Freitas AC (2018) In vitro and in vivo models for studying Zika virus biology. J Gen Virol 99(12):1529–1550. https://doi.org/10.1099/jgv.0.001153

    Article  CAS  PubMed  Google Scholar 

  32. Morrison TE, Diamond MS (2017) Animal models of Zika virus infection, pathogenesis, and immunity. J Virol 91(8). https://doi.org/10.1128/jvi.00009-17

  33. Zellweger RM, Shresta S (2014) Mouse models to study dengue virus immunology and pathogenesis. Front Immunol 5:151. https://doi.org/10.3389/fimmu.2014.00151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS (2016) A mouse model of Zika virus pathogenesis. Cell Host Microbe 19:720. https://doi.org/10.1016/j.chom.2016.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA, Auguste AJ, Langsjoen RM, Paessler S, Vasilakis N, Weaver SC (2016) Characterization of a novel murine model to study Zika virus. Am J Trop Med Hyg 94:1362. https://doi.org/10.4269/ajtmh.16-0111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dowall SD, Graham VA, Rayner E, Atkinson B, Hall G, Watson RJ, Bosworth A, Bonney LC, Kitchen S, Hewson R (2016) A susceptible mouse model for Zika virus infection. PLoS Negl Trop Dis 10(5):e0004658. https://doi.org/10.1371/journal.pntd.0004658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muthumani K, Griffin BD, Agarwal S, Kudchodkar SB, Reuschel EL, Choi H, Kraynyak KA, Duperret EK, Keaton AA, Chung C, Kim YK, Booth SA, Racine T, Yan J, Morrow MP, Jiang J, Lee B, Ramos S, Broderick KE, Reed CC, Khan AS, Humeau L, Ugen KE, Park YK, Maslow JN, Sardesai NY, Joseph Kim J, Kobinger GP, Weiner DB (2016) In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine. NPJ Vaccines 1:16021. https://doi.org/10.1038/npjvaccines.2016.21

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tripathi S, Balasubramaniam VR, Brown JA, Mena I, Grant A, Bardina SV, Maringer K, Schwarz MC, Maestre AM, Sourisseau M, Albrecht RA, Krammer F, Evans MJ, Fernandez-Sesma A, Lim JK, Garcia-Sastre A (2017) A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog 13(3):e1006258. https://doi.org/10.1371/journal.ppat.1006258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J, Uccellini MB, Tripathi S, Morrison J, Yount BL, Dinnon KH 3rd, Ruckert C, Young MC, Zhu Z, Robertson SJ, McNally KL, Ye J, Cao B, Mysorekar IU, Ebel GD, Baric RS, Best SM, Artyomov MN, Garcia-Sastre A, Diamond MS (2018) An immunocompetent mouse model of Zika virus infection. Cell Host Microbe 23(5):672–685.e676. https://doi.org/10.1016/j.chom.2018.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aliota MT, Caine EA, Walker EC, Larkin KE, Camacho E, Osorio JE (2016) Characterization of lethal Zika virus infection in AG129 mice. PLoS Negl Trop Dis 10(4):e0004682. https://doi.org/10.1371/journal.pntd.0004682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miner JJ, Sene A, Richner JM, Smith AM, Santeford A, Ban N, Weger-Lucarelli J, Manzella F, Ruckert C, Govero J, Noguchi KK, Ebel GD, Diamond MS, Apte RS (2016) Zika virus infection in mice causes panuveitis with shedding of virus in tears. Cell Rep 16(12):3208–3218. https://doi.org/10.1016/j.celrep.2016.08.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH, Diamond MS (2016) Zika virus infection damages the testes in mice. Nature 540:438. https://doi.org/10.1038/nature20556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma W, Li S, Ma S, Jia L, Zhang F, Zhang Y, Zhang J, Wong G, Zhang S, Lu X, Liu M, Yan J, Li W, Qin C, Han D, Qin C, Wang N, Li X, Gao GF (2016) Zika virus causes testis damage and leads to male infertility in mice. Cell 167:1511. https://doi.org/10.1016/j.cell.2016.11.016

    Article  CAS  PubMed  Google Scholar 

  44. Caine EA, Jagger BW, Diamond MS (2018) Animal models of Zika virus infection during pregnancy. Viruses 10(11). https://doi.org/10.3390/v10110598

  45. Manangeeswaran M, Ireland DD, Verthelyi D (2016) Zika (PRVABC59) infection is associated with T cell infiltration and neurodegeneration in CNS of immunocompetent neonatal C57Bl/6 mice. PLoS Pathog 12(11):e1006004. https://doi.org/10.1371/journal.ppat.1006004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fernandes NC, Nogueira JS, Ressio RA, Cirqueira CS, Kimura LM, Fernandes KR, Cunha MS, Souza RP, Guerra JM (2017) Experimental Zika virus infection induces spinal cord injury and encephalitis in newborn Swiss mice. Exp Toxicol Pathol 69(2):63–71. https://doi.org/10.1016/j.etp.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  47. Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L, Qin CF, Xu Z (2016) Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19(1):120–126. https://doi.org/10.1016/j.stem.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  48. Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, Garber C, Noll M, Klein RS, Noguchi KK, Mysorekar IU, Diamond MS (2016) Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165(5):1081–1091. https://doi.org/10.1016/j.cell.2016.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimaraes KP, Benazzato C, Almeida N, Pignatari GC, Romero S, Polonio CM, Cunha I, Freitas CL, Brandao WN, Rossato C, Andrade DG, Faria Dde P, Garcez AT, Buchpigel CA, Braconi CT, Mendes E, Sall AA, Zanotto PM, Peron JP, Muotri AR, Beltrao-Braga PC (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534(7606):267–271. https://doi.org/10.1038/nature18296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deng YQ, Zhang NN, Li CF, Tian M, Hao JN, Xie XP, Shi PY, Qin CF (2016) Adenosine analog NITD008 is a potent inhibitor of Zika virus. Open Forum Infect Dis 3(4):ofw175. https://doi.org/10.1093/ofid/ofw175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zmurko J, Marques RE, Schols D, Verbeken E, Kaptein SJ, Neyts J (2016) The viral polymerase inhibitor 7-deaza-2′-C-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl Trop Dis 10(5):e0004695. https://doi.org/10.1371/journal.pntd.0004695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bullard-Feibelman KM, Govero J, Zhu Z, Salazar V, Veselinovic M, Diamond MS, Geiss BJ (2017) The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antivir Res 137:134–140. https://doi.org/10.1016/j.antiviral.2016.11.023

    Article  CAS  PubMed  Google Scholar 

  53. Julander JG, Siddharthan V, Evans J, Taylor R, Tolbert K, Apuli C, Stewart J, Collins P, Gebre M, Neilson S, Van Wettere A, Lee YM, Sheridan WP, Morrey JD, Babu YS (2017) Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antivir Res 137:14–22. https://doi.org/10.1016/j.antiviral.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  54. Li C, Deng YQ, Wang S, Ma F, Aliyari R, Huang XY, Zhang NN, Watanabe M, Dong HL, Liu P, Li XF, Ye Q, Tian M, Hong S, Fan J, Zhao H, Li L, Vishlaghi N, Buth JE, Au C, Liu Y, Lu N, Du P, Qin FX, Zhang B, Gong D, Dai X, Sun R, Novitch BG, Xu Z, Qin CF, Cheng G (2017) 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity 46(3):446–456. https://doi.org/10.1016/j.immuni.2017.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong G, He S, Siragam V, Bi Y, Mbikay M, Chretien M, Qiu X (2017) Antiviral activity of quercetin-3-beta-O-D-glucoside against Zika virus infection. Virol Sin 32(6):545–547. https://doi.org/10.1007/s12250-017-4057-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sapparapu G, Fernandez E, Kose N, Bin C, Fox JM, Bombardi RG, Zhao H, Nelson CA, Bryan AL, Barnes T, Davidson E, Mysorekar IU, Fremont DH, Doranz BJ, Diamond MS, Crowe JE (2016) Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540(7633):443–447. https://doi.org/10.1038/nature20564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, Bianchi S, Vanzetta F, Minola A, Jaconi S, Mele F, Foglierini M, Pedotti M, Simonelli L, Dowall S, Atkinson B, Percivalle E, Simmons CP, Varani L, Blum J, Baldanti F, Cameroni E, Hewson R, Harris E, Lanzavecchia A, Sallusto F, Corti D (2016) Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353(6301):823–826. https://doi.org/10.1126/science.aaf8505

    Article  CAS  PubMed  Google Scholar 

  58. Wang Q, Yang H, Liu X, Dai L, Ma T, Qi J, Wong G, Peng R, Liu S, Li J, Li S, Song J, Liu J, He J, Yuan H, Xiong Y, Liao Y, Li J, Yang J, Tong Z, Griffin BD, Bi Y, Liang M, Xu X, Qin C, Cheng G, Zhang X, Wang P, Qiu X, Kobinger G, Shi Y, Yan J, Gao GF (2016) Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci Transl Med 8(369):369ra179. https://doi.org/10.1126/scitranslmed.aai8336

    Article  CAS  PubMed  Google Scholar 

  59. Stein DR, Golden JW, Griffin BD, Warner BM, Ranadheera C, Scharikow L, Sloan A, Frost KL, Kobasa D, Booth SA, Josleyn M, Ballantyne J, Sullivan E, Jiao JA, Wu H, Wang Z, Hooper JW, Safronetz D (2017) Human polyclonal antibodies produced in transchromosomal cattle prevent lethal Zika virus infection and testicular atrophy in mice. Antivir Res 146:164–173. https://doi.org/10.1016/j.antiviral.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  60. Zhao H, Fernandez E, Dowd KA, Speer SD, Platt DJ, Gorman MJ, Govero J, Nelson CA, Pierson TC, Diamond MS, Fremont DH (2016) Structural basis of Zika virus-specific antibody protection. Cell 166(4):1016–1027. https://doi.org/10.1016/j.cell.2016.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shan C, Muruato AE, Nunes BTD, Luo H, Xie X, Medeiros DBA, Wakamiya M, Tesh RB, Barrett AD, Wang T, Weaver SC, Vasconcelos PFC, Rossi SL, Shi PY (2017) A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med 23(6):763–767. https://doi.org/10.1038/nm.4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Richner JM, Jagger BW, Shan C, Fontes CR, Dowd KA, Cao B, Himansu S, Caine EA, Nunes BTD, Medeiros DBA, Muruato AE, Foreman BM, Luo H, Wang T, Barrett AD, Weaver SC, Vasconcelos PFC, Rossi SL, Ciaramella G, Mysorekar IU, Pierson TC, Shi PY, Diamond MS (2017) Vaccine mediated protection against Zika virus-induced congenital disease. Cell 170(2):273–283.e212. https://doi.org/10.1016/j.cell.2017.06.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, Julander JG, Tang WW, Shresta S, Pierson TC, Ciaramella G, Diamond MS (2017) Modified mRNA vaccines protect against Zika virus infection. Cell 168(6):1114–1125.e1110. https://doi.org/10.1016/j.cell.2017.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sumathy K, Kulkarni B, Gondu RK, Ponnuru SK, Bonguram N, Eligeti R, Gadiyaram S, Praturi U, Chougule B, Karunakaran L, Ella KM (2017) Protective efficacy of Zika vaccine in AG129 mouse model. Sci Rep 7:46375. https://doi.org/10.1038/srep46375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Griffin BD, Muthumani K, Warner BM, Majer A, Hagan M, Audet J, Stein DR, Ranadheera C, Racine T, De La Vega MA, Piret J, Kucas S, Tran KN, Frost KL, De Graff C, Soule G, Scharikow L, Scott J, McTavish G, Smid V, Park YK, Maslow JN, Sardesai NY, Kim JJ, Yao XJ, Bello A, Lindsay R, Boivin G, Booth SA, Kobasa D, Embury-Hyatt C, Safronetz D, Weiner DB, Kobinger GP (2017) DNA vaccination protects mice against Zika virus-induced damage to the testes. Nat Commun 8:15743. https://doi.org/10.1038/ncomms15743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barrett ADT (2018) Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation. NPJ Vaccines 3:24. https://doi.org/10.1038/s41541-018-0061-9

    Article  PubMed  PubMed Central  Google Scholar 

  67. White JP, Xiong S, Malvin NP, Khoury-Hanold W, Heuckeroth RO, Stappenbeck TS, Diamond MS (2018) Intestinal dysmotility syndromes following systemic infection by flaviviruses. Cell 175(5):1198–1212.e1112. https://doi.org/10.1016/j.cell.2018.08.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, Nachbagauer R, Foster GA, Krysztof D, Tortorella D, Stramer SL, Garcia-Sastre A, Krammer F, Lim JK (2017) Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356(6334):175–180. https://doi.org/10.1126/science.aal4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Osuna CE, Lim SY, Deleage C, Griffin BD, Stein D, Schroeder LT, Omange R, Best K, Luo M, Hraber PT, Andersen-Elyard H, Ojeda EF, Huang S, Vanlandingham DL, Higgs S, Perelson AS, Estes JD, Safronetz D, Lewis MG, Whitney JB (2016) Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat Med 22:1448. https://doi.org/10.1038/nm.4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dudley DM, Aliota MT, Mohr EL, Weiler AM, Lehrer-Brey G, Weisgrau KL, Mohns MS, Breitbach ME, Rasheed MN, Newman CM, Gellerup DD, Moncla LH, Post J, Schultz-Darken N, Schotzko ML, Hayes JM, Eudailey JA, Moody MA, Permar SR, O’Connor SL, Rakasz EG, Simmons HA, Capuano S, Golos TG, Osorio JE, Friedrich TC, O’Connor DH (2016) A rhesus macaque model of Asian-lineage Zika virus infection. Nat Commun 7:12204. https://doi.org/10.1038/ncomms12204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, Vornhagen J, Baldessari A, Dighe MK, Thiel J, Merillat S, Armistead B, Tisoncik-Go J, Green RR, Davis MA, Dewey EC, Fairgrieve MR, Gatenby JC, Richards T, Garden GA, Diamond MS, Juul SE, Grant RF, Kuller L, Shaw DW, Ogle J, Gough GM, Lee W, English C, Hevner RF, Dobyns WB, Gale M Jr, Rajagopal L (2016) Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat Med 22(11):1256–1259. https://doi.org/10.1038/nm.4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Epidemiol 27:493–497

    Article  Google Scholar 

  73. Baz M (2020) Zika virus isolation, purification and titration. Methods Mol Biol

    Google Scholar 

  74. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ et al (2008) Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14(8):1232–1239

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darwyn Kobasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Griffin, B.D., Safronetz, D., Kobasa, D. (2020). Evaluating Zika Virus Pathogenesis in Immunocompromised Mice. In: Kobinger, G., Racine, T. (eds) Zika Virus. Methods in Molecular Biology, vol 2142. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0581-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0581-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0580-6

  • Online ISBN: 978-1-0716-0581-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics