Skip to main content

Comparative Analysis of Zika Virus Detection by RT-qPCR, RT-LAMP, and RT-RPA

  • Protocol
  • First Online:
Zika Virus

Abstract

Molecular detection of Zika virus (ZIKV) is a key element of outbreak management. Multiple PCR and isothermal ZIKV assays targeting different ZIKV sequences have been published. In this study, we compared a qRT-PCR, 2 RT-LAMP assays (based on different primer design approaches), and an RT-RPA for the detection of African and Asian/American lineages of ZIKV isolates from human, mosquito, and monkey. Results showed that RT-LAMP detected 100% of samples with a time threshold (Tt) of 18.01 ± 11.71 min while qRT-PCR detected 88.88% of samples with a Tt of 58.30 ± 16.58 min and RT-RPA 50% of samples with a Tt of 3.70 ± 0.44 min.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dick GWA, Kitchen SF, Haddow AJ (1952) Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46:509–520

    Article  CAS  Google Scholar 

  2. Hayes EB (2009) Zika virus outside Africa. Emerg Infect Dis 15:1347–1350

    Article  Google Scholar 

  3. Weinbren MP, Williams MC (1958) Zika virus: further isolations in the Zika area, and some studies on the strains isolated. Trans R Soc Trop Med Hyg 52:263–268

    Article  CAS  Google Scholar 

  4. Haddow AJ, Williams MC, Woodall JP et al (1964) Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest. Bull World Health Organ 31:57–69

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Marchette NJ, Garcia R, Rudnick A (1969) Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg 18:411–415

    Article  CAS  Google Scholar 

  6. Diagne CT, Diallo D, Faye O et al (2015) Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infect Dis 15:492

    Article  Google Scholar 

  7. Atlas of Human Infectious Diseases. In: Wiley.com. https://www.wiley.com/en-us/Atlas+of+Human+Infectious+Diseases-p-9781444354676. Accessed 27 Aug 2019

  8. Chan JFW, Choi GKY, Yip CCY et al (2016) Zika fever and congenital Zika syndrome: an unexpected emerging arboviral disease. J Infect 72:507–524

    Article  Google Scholar 

  9. Al-Qahtani AA, Nazir N, Al-Anazi MR et al (2016) Zika virus: a new pandemic threat. J Infect Dev Ctries 10:201–207

    Article  Google Scholar 

  10. Ramos da Silva S, Gao S-J (2016) Zika virus: an update on epidemiology, pathology, molecular biology, and animal model. J Med Virol 88:1291–1296

    Article  Google Scholar 

  11. Besnard M, Lastere S, Teissier A et al (2014) Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill 19

    Google Scholar 

  12. Slavov SN, Otaguiri KK, Kashima S, Covas DT (2016) Overview of Zika virus (ZIKV) infection in regards to the Brazilian epidemic. Braz J Med Biol Res 49:e5420

    Article  CAS  Google Scholar 

  13. Foy BD, Kobylinski KC, Foy JLC et al (2011) Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis 17:880–882

    Article  Google Scholar 

  14. Faye O, Faye O, Diallo D et al (2013) Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J 10:311

    Article  Google Scholar 

  15. Lanciotti RS, Kosoy OL, Laven JJ et al (2008) Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14:1232–1239

    Article  CAS  Google Scholar 

  16. Abd El Wahed A, Sanabani SS, Faye O et al (2017) Rapid molecular detection of Zika virus in acute-phase urine samples using the recombinase polymerase amplification assay. PLoS Curr 9. https://doi.org/10.1371/currents.outbreaks.a7f1db2c7d66c3fc0ea0a774305d319e

  17. Calvert AE, Biggerstaff BJ, Tanner NA et al (2017) Rapid colorimetric detection of Zika virus from serum and urine specimens by reverse transcription loop-mediated isothermal amplification (RT-LAMP). PLoS One 12:e0185340

    Article  Google Scholar 

  18. Castro T, Sabalza M, Barber C et al (2018) Rapid diagnosis of Zika virus through saliva and urine by Loop-mediated isothermal amplification (LAMP). J Oral Microbiol 10:1510712

    Article  CAS  Google Scholar 

  19. Lamb LE, Bartolone SN, Tree MO et al (2018) Rapid detection of Zika virus in urine samples and infected mosquitos by reverse transcription-loop-mediated isothermal amplification. Sci Rep 8:3803

    Article  Google Scholar 

  20. Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    Article  CAS  Google Scholar 

  21. Notomi T, Mori Y, Tomita N, Kanda H (2015) Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol 53:1–5

    Article  CAS  Google Scholar 

  22. Yan L, Zhou J, Zheng Y et al (2014) Isothermal amplified detection of DNA and RNA. Mol BioSyst 10:970–1003

    Article  CAS  Google Scholar 

  23. Daher RK, Stewart G, Boissinot M, Bergeron MG (2016) Recombinase polymerase amplification for diagnostic applications. Clin Chem 62:947–958

    Article  CAS  Google Scholar 

  24. Amer HM, Abd El Wahed A, Shalaby MA et al (2013) A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay. J Virol Methods 193:337–340

    Article  CAS  Google Scholar 

  25. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204

    Article  Google Scholar 

  26. Digoutte JP, Calvo-Wilson MA, Mondo M et al (1992) Continuous cell lines and immune ascitic fluid pools in arbovirus detection. Res Virol 143:417–422

    Article  CAS  Google Scholar 

  27. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  28. Tolstrup N, Nielsen PS, Kolberg JG et al (2003) OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res 31:3758–3762

    Article  CAS  Google Scholar 

  29. Peeling RW, Artsob H, Pelegrino JL et al (2010) Evaluation of diagnostic tests: dengue. Nat Rev Microbiol 8:S30–S38

    Article  CAS  Google Scholar 

  30. Torres C, Vitalis EA, Baker BR et al (2011) LAVA: an open-source approach to designing LAMP (loop-mediated isothermal amplification) DNA signatures. BMC Bioinformatics 12:240

    Article  CAS  Google Scholar 

  31. Lopez-Jimena B, Bekaert M, Bakheit M et al (2018) Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype. PLoS Negl Trop Dis 12:e0006381

    Article  Google Scholar 

  32. Lopez-Jimena B, Wehner S, Harold G et al (2018) Development of a single-tube one-step RT-LAMP assay to detect the Chikungunya virus genome. PLoS Negl Trop Dis 12:e0006448

    Article  Google Scholar 

  33. Charrel R, Mögling R, Pas S et al (2017) Variable sensitivity in molecular detection of Zika virus in European expert laboratories: external quality assessment, November 2016. J Clin Microbiol 55:3219–3226

    Article  Google Scholar 

  34. Abd El Wahed A, Patel P, Heidenreich D et al (2013) Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr 5. https://doi.org/10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364

Download references

Acknowledgments

This study has been partially funded by the EU research project DiscoGnosis (Disc-shaped Point-of-Care platform for infectious disease diagnosis) and under the European Commission seventh Framework Programme 2007–2013 for Research and Technological Development of the EU (Grant Agreement No. 318408) and by the European Union’s Horizon 2020 research and innovation programme under ZikaPLAN grant agreement no. 734584. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. All authors have read and approved this manuscript and declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheikh Tidiane Diagne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diagne, C.T. et al. (2020). Comparative Analysis of Zika Virus Detection by RT-qPCR, RT-LAMP, and RT-RPA. In: Kobinger, G., Racine, T. (eds) Zika Virus. Methods in Molecular Biology, vol 2142. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0581-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0581-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0580-6

  • Online ISBN: 978-1-0716-0581-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics