Skip to main content

Cystatin Activity–Based Protease Profiling to Select Protease Inhibitors Useful in Plant Protection

  • Protocol
  • First Online:
Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2139))

Abstract

Protease inhibitors of the cystatin protein superfamily show potential in plant protection for the control of herbivorous pests. Here, we describe a cystatin activity–based profiling procedure for the selection of potent cystatin candidates, using single functional variants of tomato cystatin SlCYS8 and digestive Cys proteases of the herbivore insect Colorado potato beetle as a case study. The procedure involves the capture of target Cys proteases with biotinylated versions of the cystatins, followed by the identification and quantitation of captured proteases by mass spectrometry. An example is given to illustrate usefulness of the approach as an alternative to current procedures for recombinant inhibitor selection based on in vitro assays with synthetic peptide substrates. A second example is given showing its usefulness as a tool to compare the affinity spectra of inhibitor variants toward different subsets of target protease complements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlüter U, Benchabane M, Munger A et al (2010) Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. J Exp Bot 61:4169–4183

    Article  Google Scholar 

  2. Macedo MLR, de Oliveira CFR, Costa PM et al (2015) Adaptive mechanisms of insect pests against plant protease inhibitors and future prospects related to crop protection: a review. Protein Pept Lett 22:149–163

    Article  CAS  Google Scholar 

  3. Chen M, Shelton A, Ye GY (2011) Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol 56:81–101

    Article  CAS  Google Scholar 

  4. Li Y, Hallerman EM, Liu Q et al (2016) The development and status of Bt rice in China. Plant Biotechnol J 14:839–848

    Article  Google Scholar 

  5. Birk Y (2003) Plant protease inhibitors. Springer, New York, NY

    Google Scholar 

  6. Broadway RM (2000) The adaptation of insects to protease inhibitors. In: Michaud D (ed) Recombinant protease inhibitors in plants. CRC Press, Boca Raton, FL, pp 80–88

    Google Scholar 

  7. Sainsbury F, Benchabane M, Goulet MC, Michaud D (2012) Multimodal protein constructs for herbivore insect control. Toxins 4:455–475

    Article  CAS  Google Scholar 

  8. Michaud D, Nguyen-Quoc B (2000) Using natural and modified protease inhibitors. In: Michaud D (ed) Recombinant protease inhibitors in plants. CRC Press, Boca Raton, FL, pp 114–127

    Google Scholar 

  9. Srinivasan A, Giri AP, Gupta VS (2006) Structural and functional diversities in lepidopteran serine proteases. Cell Mol Biol Lett 11:132–154

    Article  CAS  Google Scholar 

  10. Vorster J, Rasoolizadeh A, Goulet MC et al (2015) Positive selection of digestive Cys proteases in herbivorous Coleoptera. Insect Biochem Mol Biol 65:10–19

    Article  CAS  Google Scholar 

  11. Rasoolizadeh A, Munger A, Goulet MC et al (2016) Functional proteomics-aided selection of protease inhibitors for herbivore insect control. Sci Rep 6:38827

    Article  CAS  Google Scholar 

  12. Sainsbury F, Rhéaume AJ, Goulet MC et al (2012) Discrimination of differentially inhibited cysteine proteases by activity-based profiling using cystatin variants with tailored specificities. J Proteome Res 11:5983–5993

    Article  CAS  Google Scholar 

  13. Benchabane M, Schlüter U, Vorster J et al (2010) Plant cystatins. Biochimie 92:1657–1666

    Article  CAS  Google Scholar 

  14. Goulet MC, Dallaire C, Vaillancourt LP et al (2008) Tailoring the specificity of a plant cystatin toward herbivorous insect digestive cysteine proteases by single mutations at positively selected amino acid sites. Plant Physiol 146:1010–1019

    Article  CAS  Google Scholar 

  15. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8:921–929

    Article  CAS  Google Scholar 

  16. Smith BJ (1984) SDS polyacrylamide gel electrophoresis of proteins. In: Walker JM (ed) Methods in molecular biology, Proteins, vol 1. Humana Press, Clifton, NJ, pp 41–55

    Google Scholar 

  17. Arai S, Watanabe H, Kondo H et al (1991) Papain-inhibitory activity of oryzacystatin, a rice seed cysteine proteinase inhibitor, depends on the central Gln-Val-Val-Ala-Gly region conserved among cystatin superfamily members. J Biochem 109:294–298

    CAS  PubMed  Google Scholar 

  18. Visal-Shah SD, Vrain TC, Yelle S et al (2001) An electroblotting, two-step procedure for the detection of proteinases and the study of proteinase/inhibitor complexes in gelatin-containing polyacrylamide gels. Electrophoresis 22:2646–2652

    Article  CAS  Google Scholar 

  19. Zhang B, VerBerkmoes NC, Langston MA et al (2006) Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res 5:2909–2918

    Article  CAS  Google Scholar 

  20. Old WM, Meyer-Arendt K, Aveline-Wolf L et al (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  CAS  Google Scholar 

  21. Oppert B, Rasoolizadeh A, Michaud D (2014) The coleopteran gut and targets for pest control. In: Hoffmann K (ed) Insect molecular biology and ecology. CRC Press, Boca Raton, FL, pp 291–317

    Google Scholar 

  22. Rasoolizadeh A, Goulet MC, Sainsbury F et al (2016) Single substitutions to closely related amino acids contribute to the functional diversification of an insect-inducible, positively selected plant cystatin. FEBS J 283:1623–1635

    Article  Google Scholar 

  23. Cingel A, Savic J, Lazarevic J et al (2016) Extraordinary adaptive plasticity of Colorado potato beetle: “ten-striped spearman” in the era of biotechnological warfare. Int J Mol Sci 17:1538

    Article  Google Scholar 

  24. Christeller JT (2005) Evolutionary mechanisms acting on proteinase inhibitor variability. FEBS J 272:5710–5722

    Article  CAS  Google Scholar 

  25. Bouchard E, Cloutier C, Michaud D (2003) Oryzacystatin I expressed in transgenic potato induces digestive compensation in an insect natural predator via its herbivorous prey feeding on the plant. Mol Ecol 12:2439–2446

    Article  CAS  Google Scholar 

  26. Kiggundu A, Goulet MC, Goulet C et al (2006) Modulating the proteinase inhibitory profile of a plant cystatin by single mutations at positively selected amino acid sites. Plant J 48:403–413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work supported by Discovery and Discovery Accelerator Supplement grants from the Natural Science and Engineering Research Council of Canada to D.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Michaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goulet, MC., Sainsbury, F., Michaud, D. (2020). Cystatin Activity–Based Protease Profiling to Select Protease Inhibitors Useful in Plant Protection. In: Jorrin-Novo, J., Valledor, L., Castillejo, M., Rey, MD. (eds) Plant Proteomics. Methods in Molecular Biology, vol 2139. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0528-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0528-8_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0527-1

  • Online ISBN: 978-1-0716-0528-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics