Skip to main content

A Versatile Workflow for the Identification of Protein–Protein Interactions Using GFP-Trap Beads and Mass Spectrometry-Based Label-Free Quantification

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2139))

Abstract

Protein functions often rely on protein–protein interactions. Hence, knowledge about the protein interaction network is essential for an understanding of protein functions and plant physiology. A major challenge of the postgenomic era is the mapping of protein–protein interaction networks. This chapter describes a mass spectrometry-based label-free quantification approach to identify in vivo protein interaction networks. The procedure starts with the extraction of intact protein complexes from transgenic plants expressing the protein of interest fused to a GFP-Tag (bait-GFP), as well as plants expressing a free GFP as background control. Enrichment of the GFP-tagged protein together with its interaction partners, as well as the free GFP, is performed by immunoaffinity purification. The pull-down quality can be evaluated by simple gel-based techniques. In parallel, the captured proteins are trypsin-digested and relatively quantified by label-free mass spectrometry-based quantification. The relative quantification approach largely relies on the normalization of protein abundances of background-binding proteins, which occur in both bait-GFP and free GFP pull-downs. Therefore, relative quantification of the protein pull-down is superior over methods that solely rely on protein identifications and removal of often copurified high-abundance proteins from the bait-GFP pull-downs, which might remove real interaction partners. A further strength of this method is that it can be applied to any soluble GFP-tagged protein.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bolger M, Schwacke R, Gundlach H et al (2017) From plant genomes to phenotypes. J Biotechnol 261:46–52

    Article  CAS  Google Scholar 

  2. Schatz MC, Witkowski J, Mccombie WR (2012) Current challenges in de novo plant genome assembly. Genome Biol 13:2–7

    Article  Google Scholar 

  3. Hümann U, Woetzel S, Madrid-Herrero E et al (2017) Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Res 27:778–786

    Article  Google Scholar 

  4. Bontinck M, Van Leene J, Gadeyne A et al (2018) Recent trends in plant protein complex analysis in a developmental context. Front Plant Sci 9:1–14

    Article  Google Scholar 

  5. Sako K, Yanagawa Y, Kanai T et al (2014) Proteomic analysis of the 26S proteasome reveals its direct interaction with transit peptides of plastid protein precursors for their degradation. J Proteome Res 13:3223–3230

    Article  CAS  Google Scholar 

  6. Dose A, Sindlinger J, Bierlmeier J et al (2016) Interrogating substrate selectivity and composition of endogenous histone deacetylase complexes with chemical probes. Angew Chem Int Ed 55:1192–1195

    Article  CAS  Google Scholar 

  7. Inoshima MM, Ikuchi KK (2015) Chemical tools for probing histone deacetylase (HDAC) activity. Anal Sci 31:287–292

    Article  Google Scholar 

  8. Kramer K, Finkemeier I, Humpf H et al (2016) The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization. Mol Microbiol 102:951–974

    Article  Google Scholar 

  9. Gao X, Liu CZ, Li DD et al (2016) The Arabidopsis KIN βγ subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reactive oxygen species in pollen. PLoS Genet 12(7):e1006228

    Article  Google Scholar 

  10. Editor D (2014) Dual-targeting of Arabidopsis chloroplasts and peroxisomes involves interaction with Trx m2 in the cytosol. Mol Plant 7:252–255

    Article  Google Scholar 

  11. Garagounis C, Kostaki K, Hawkins TJ et al (2017) Microcompartmentation of cytosolic aldolase by interaction with the actin cytoskeleton in Arabidopsis. J Exp Bot 68:885–898

    Article  CAS  Google Scholar 

  12. Zhang Y, Beard KF, Swart C (2017) Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat Commun 8:15212

    Article  CAS  Google Scholar 

  13. Liebert MA, Rouhier N, Villarejo A et al (2005) Identification of plant glutaredoxin targets. Antioxid Redox Signal 7:919–929

    Article  Google Scholar 

  14. Hao Y, Wang H, Qiao S et al (2016) Histone deacetylase HDA6 enhances brassinosteroid signaling by inhibiting the BIN2 kinase. Proc Natl Acad Sci U S A 113:2–7

    Article  Google Scholar 

  15. Jones AM, Xuan Y, Xu M et al (2014) Border control — a membrane-linked interactome of Arabidopsis. Science 1:711–717

    Article  Google Scholar 

  16. Krishnakumar V, Hanlon MR, Contrino S et al (2015) Araport: the Arabidopsis information portal. Nucleic Acids Res 43:D1003–D1009

    Article  CAS  Google Scholar 

  17. Luhua S, Hegie A, Suzuki N et al (2013) Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. Physiol Plant 148:322–333

    Article  CAS  Google Scholar 

  18. Née G, Kramer K, Nakabayashi K et al (2017) DELAY of GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nat Commun 8:1–8

    Article  Google Scholar 

  19. König A, Hartl M, Pham PA et al (2014) The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism. Plant Physiol 164:1401–1414

    Article  Google Scholar 

  20. Trigg SA, Garza RM, MacWilliams A et al (2017) CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping. Nat Methods 14:819–825

    Article  CAS  Google Scholar 

  21. Bock R (2016) Lighting the way to protein-protein interactions: recommendations on best practices for bimolecular fluorescence complementation analyses. Plant Cell 28:1002–1008

    Article  Google Scholar 

  22. Senkler J, Senkler M, Eubel H et al (2017) The mitochondrial complexome of Arabidopsis thaliana. Plant J 89:1079–1092

    Article  CAS  Google Scholar 

  23. Cui B, Fang S, Xing Y et al (2015) Crystallographic analysis of the Arabidopsis thaliana BAG5 – calmodulin protein complex research communications. Acta Crystallogr F Struct Biol Cryst Commun 71:870–875

    Article  CAS  Google Scholar 

  24. Bai Y (2015) Detecting protein-protein interactions by gel filtration chromatography. In: Protein-protein interactions: methods and applications, 2nd edn. Humana Press, New York, NY, pp 223–232

    Google Scholar 

  25. Ströher E, Dietz K (2006) Concepts and approaches towards understanding the cellular redox proteome. Plant Biol 8:407–418

    Article  Google Scholar 

  26. Van LJ, Eeckhout D, Cannoot B et al (2015) An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nat Protoc 10:169–187

    Article  Google Scholar 

  27. Birkenbihl RP, Kracher B, Ross A et al (2018) Principles and characteristics of the Arabidopsis WRKY regulatory network during early MAMP-triggered immunity. Plant J 96:487–502

    Article  CAS  Google Scholar 

  28. Hein MY, Hubner NC, Poser I et al (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–723

    Article  CAS  Google Scholar 

  29. Keilhauer EC, Hein MY, Mann M (2015) Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol Cell Proteomics 14:120–135

    Article  CAS  Google Scholar 

  30. Moree WJ, Mitchell M, Widger W et al (2016) Observations on different resin strategies for affinity purification mass spectrometry of a tagged protein. Anal Biochem 515:26–32

    Article  Google Scholar 

  31. Rothbauer U, Zolghadr K, Tillib S et al (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3:887–889

    Article  CAS  Google Scholar 

  32. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  Google Scholar 

  33. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  CAS  Google Scholar 

  34. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financial support through the project grants NE2296/1-1 and FI1655/6-1, and the infrastructure grant INST211/744-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Finkemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Née, G., Tilak, P., Finkemeier, I. (2020). A Versatile Workflow for the Identification of Protein–Protein Interactions Using GFP-Trap Beads and Mass Spectrometry-Based Label-Free Quantification. In: Jorrin-Novo, J., Valledor, L., Castillejo, M., Rey, MD. (eds) Plant Proteomics. Methods in Molecular Biology, vol 2139. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0528-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0528-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0527-1

  • Online ISBN: 978-1-0716-0528-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics