Skip to main content

Screening Intrinsically Disordered Regions for Short Linear Binding Motifs

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

  • 4252 Accesses

Abstract

The intrinsically disordered regions of the proteome are enriched in short linear motifs (SLiMs) that serve as binding sites for peptide binding proteins. These interactions are often of low-to-mid micromolar affinities and are challenging to screen for experimentally. However, a range of dedicated methods have been developed recently, which open for screening of SLiM-based interactions on large scale. A variant of phage display, termed proteomic peptide phage display (ProP-PD), has proven particularly useful for the purpose. Here, we describe a complete high-throughput ProP-PD protocol for screening intrinsically disordered regions for SLiMs. The protocol requires some basic bioinformatics skills for the design of the library and for data analysis but can be performed in a standard biochemistry lab. The protocol starts from the construction of a library, followed by the high-throughput expression and purification of bait proteins, the phage selection, and the analysis of the binding-enriched phage pools using next-generation sequencing. As the protocol generates rather large data sets, we also emphasize the importance of data management and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H, Gibson TJ (2012) Attributes of short linear motifs. Mol BioSyst 8(1):268–281. https://doi.org/10.1039/c1mb05231d

    Article  CAS  PubMed  Google Scholar 

  2. Stein A, Mosca R, Aloy P (2011) Three-dimensional modeling of protein interactions and complexes is going 'omics. Curr Opin Struct Biol 21(2):200–208. https://doi.org/10.1016/j.sbi.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  3. Ivarsson Y (2012) Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett 586(17):2638–2647. https://doi.org/10.1016/j.febslet.2012.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaneko T, Li L, Li SS (2008) The SH3 domain – a family of versatile peptide- and protein-recognition module. Front Biosci 13:4938–4952. https://doi.org/10.2741/305

  5. Ingham RJ, Colwill K, Howard C, Dettwiler S, Lim CS, Yu J, Hersi K, Raaijmakers J, Gish G, Mbamalu G, Taylor L, Yeung B, Vassilovski G, Amin M, Chen F, Matskova L, Winberg G, Ernberg I, Linding R, O'Donnell P, Starostine A, Keller W, Metalnikov P, Stark C, Pawson T (2005) WW domains provide a platform for the assembly of multiprotein networks. Mol Cell Biol 25(16):7092–7106. https://doi.org/10.1128/MCB.25.16.7092-7106.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tanoue T, Adachi M, Moriguchi T, Nishida E (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2(2):110–116. https://doi.org/10.1038/35000065

    Article  CAS  PubMed  Google Scholar 

  7. Wu CG, Chen H, Guo F, Yadav VK, McIlwain SJ, Rowse M, Choudhary A, Lin Z, Li Y, Gu T, Zheng A, Xu Q, Lee W, Resch E, Johnson B, Day J, Ge Y, Ong IM, Burkard ME, Ivarsson Y, Xing Y (2017) PP2A-B′ holoenzyme substrate recognition, regulation and role in cytokinesis. Cell Discov 3:17027. https://doi.org/10.1038/celldisc.2017.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roy J, Cyert MS (2009) Cracking the phosphatase code: docking interactions determine substrate specificity. Sci Signal 2(100):re9. https://doi.org/10.1126/scisignal.2100re9

    Article  PubMed  Google Scholar 

  9. Zhang Q, Shi Q, Chen Y, Yue T, Li S, Wang B, Jiang J (2009) Multiple Ser/Thr-rich degrons mediate the degradation of ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase. Proc Natl Acad Sci U S A 106(50):21191–21196. https://doi.org/10.1073/pnas.0912008106

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gouw M, Michael S, Samano-Sanchez H, Kumar M, Zeke A, Lang B, Bely B, Chemes LB, Davey NE, Deng Z, Diella F, Gurth CM, Huber AK, Kleinsorg S, Schlegel LS, Palopoli N, Roey KV, Altenberg B, Remenyi A, Dinkel H, Gibson TJ (2018) The eukaryotic linear motif resource - 2018 update. Nucleic Acids Res 46(D1):D428–D434. https://doi.org/10.1093/nar/gkx1077

    Article  CAS  PubMed  Google Scholar 

  11. Tompa P, Davey NE, Gibson TJ, Babu MM (2014) A million peptide motifs for the molecular biologist. Mol Cell 55(2):161–169. https://doi.org/10.1016/j.molcel.2014.05.032

    Article  CAS  PubMed  Google Scholar 

  12. Stiffler MA, Chen JR, Grantcharova VP, Lei Y, Fuchs D, Allen JE, Zaslavskaia LA, MacBeath G (2007) PDZ domain binding selectivity is optimized across the mouse proteome. Science 317(5836):364–369. https://doi.org/10.1126/science.1144592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Teyra J, Huang H, Jain S, Guan X, Dong A, Liu Y, Tempel W, Min J, Tong Y, Kim PM, Bader GD, Sidhu SS (2017) Comprehensive analysis of the human SH3 domain family reveals a wide variety of non-canonical specificities. Structure 25(10):1598–1610. e1593. https://doi.org/10.1016/j.str.2017.07.017

    Article  CAS  PubMed  Google Scholar 

  14. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y, Xin X, Chan AC, Seshagiri S, Lasky LA, Sander C, Boone C, Bader GD, Sidhu SS (2008) A specificity map for the PDZ domain family. PLoS Biol 6(9):e239. https://doi.org/10.1371/journal.pbio.0060239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blikstad C, Ivarsson Y (2015) High-throughput methods for identification of protein-protein interactions involving short linear motifs. Cell Commun Signal 13:38. https://doi.org/10.1186/s12964-015-0116-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davey NE, Seo MH, Yadav VK, Jeon J, Nim S, Krystkowiak I, Blikstad C, Dong D, Markova N, Kim PM, Ivarsson Y (2017) Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. FEBS J 284(3):485–498. https://doi.org/10.1111/febs.13995

    Article  CAS  PubMed  Google Scholar 

  17. Ivarsson Y, Arnold R, McLaughlin M, Nim S, Joshi R, Ray D, Liu B, Teyra J, Pawson T, Moffat J, Li SS, Sidhu SS, Kim PM (2014) Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proc Natl Acad Sci U S A 111(7):2542–2547. https://doi.org/10.1073/pnas.1312296111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garrido-Urbani S, Garg P, Ghossoub R, Arnold R, Lembo F, Sundell GN, Kim PM, Lopez M, Zimmermann P, Sidhu SS, Ivarsson Y (2016) Proteomic peptide phage display uncovers novel interactions of the PDZ1-2 supramodule of syntenin. FEBS Lett 590(1):3–12. https://doi.org/10.1002/1873-3468.12037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wigington C et al (2019) Systematic discovery of short linear motifs decodes calcineurin phosphatase signaling. https://www.biorxiv.org/content/101101/632547v1

  20. Kataria M, Mouilleron S, Seo MH, Corbi-Verge C, Kim PM, Uhlmann F (2018) A PxL motif promotes timely cell cycle substrate dephosphorylation by the Cdc14 phosphatase. Nat Struct Mol Biol 25(12):1093–1102. https://doi.org/10.1038/s41594-018-0152-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sundell GN, Arnold R, Ali M, Naksukpaiboon P, Orts J, Guntert P, Chi CN, Ivarsson Y (2018) Proteome-wide analysis of phospho-regulated PDZ domain interactions. Mol Syst Biol 14(8):e8129. https://doi.org/10.15252/msb.20178129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang H, Sidhu SS (2011) Studying binding specificities of peptide recognition modules by high-throughput phage display selections. Methods Mol Biol 781:87–97. https://doi.org/10.1007/978-1-61779-276-2_6

    Article  CAS  PubMed  Google Scholar 

  23. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82(2):488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rajan S, Sidhu SS (2012) Simplified synthetic antibody libraries. Methods Enzymol 502:3–23. https://doi.org/10.1016/B978-0-12-416039-2.00001-X

    Article  CAS  PubMed  Google Scholar 

  25. McLaughlin ME, Sidhu SS (2013) Engineering and analysis of peptide-recognition domain specificities by phage display and deep sequencing. Methods Enzymol 523:327–349. https://doi.org/10.1016/B978-0-12-394292-0.00015-1

    Article  CAS  PubMed  Google Scholar 

  26. Ernst A, Sazinsky SL, Hui S, Currell B, Dharsee M, Seshagiri S, Bader GD, Sidhu SS (2009) Rapid evolution of functional complexity in a domain family. Sci Signal 2(87):ra50. https://doi.org/10.1126/scisignal.2000416

    Article  CAS  PubMed  Google Scholar 

  27. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43(W1):W39–W49. https://doi.org/10.1093/nar/gkv416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Foundation for Strategic Research (grant number SB16-0039) and the Swedish Research Council (grant number 2016-04965).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ylva Ivarsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ali, M., Simonetti, L., Ivarsson, Y. (2020). Screening Intrinsically Disordered Regions for Short Linear Binding Motifs. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics