Skip to main content

Analysis of Multivalent IDP Interactions: Stoichiometry, Affinity, and Local Concentration Effect Measurements

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Nuclear magnetic resonance (NMR) titration and isothermal titration calorimetry can be combined to provide an assessment of how multivalent intrinsically disordered protein (IDP) interactions can involve enthalpy–entropy balance. Here, we describe the underlying technical details and additional methods, such as dynamic light scattering analysis, needed to assess these reactions. We apply this to a central interaction involving the disordered regions of phe–gly nucleoporins (FG-Nups) that contain multiple phenylalanine–glycine repeats which are of particular interest, as their interactions with nuclear transport factors (NTRs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex (NPC). These analyses revealed that a combination of low per-FG motif affinity and the enthalpy–entropy balance prevents high-avidity interaction between FG-Nups and NTRs while the large number of FG motifs promotes frequent FG–NTR contacts, resulting in enhanced selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevers LM, de Vink PJ, Ottmann C et al (2018) A thermodynamic model for multivalency in 14-3-3 protein-protein interactions. J Am Chem Soc 140(43):14498–14510

    Article  CAS  Google Scholar 

  2. Harmon TS, Holehouse AS, Rosen MK et al (2017) Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. elife 6. https://doi.org/10.7554/eLife.30294

  3. Gueroussov S, Weatheritt RJ, O’Hanlon D et al (2017) Regulatory expansion in mammals of multivalent hnrnp assemblies that globally control alternative splicing. Cell 170(2):324–339 e23

    Article  CAS  Google Scholar 

  4. Vonnemann J, Liese S, Kuehne C et al (2015) Size dependence of steric shielding and multivalency effects for globular binding inhibitors. J Am Chem Soc 137(7):2572–2579

    Article  CAS  Google Scholar 

  5. Dubacheva GV, Curk T, Auzely-Velty R et al (2015) Designing multivalent probes for tunable superselective targeting. Proc Natl Acad Sci U S A 112(18):5579–5584

    Article  CAS  Google Scholar 

  6. Clark SA, Jespersen N, Woodward C et al (2015) Multivalent IDP assemblies: unique properties of LC8-associated, IDP duplex scaffolds. FEBS Lett 589(19 Pt A):2543–2551

    Article  CAS  Google Scholar 

  7. Li P, Banjade S, Cheng HC et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483(7389):336–340

    Article  CAS  Google Scholar 

  8. Fasting C, Schalley CA, Weber M et al (2012) Multivalency as a chemical organization and action principle. Angew Chem Int Ed Engl 51(42):10472–10498

    Article  CAS  Google Scholar 

  9. Cloninger MJ, Bilgiçer B, Li L et al (2012) Multivalency. In: Supramolecular chemistry. Wiley, Hoboken, NJ

    Google Scholar 

  10. Koenderman L (2019) Inside-out control of fc-receptors. Front Immunol 10:544

    Article  CAS  Google Scholar 

  11. Banani SF, Lee HO, Hyman AA et al (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18(5):285–298

    Article  CAS  Google Scholar 

  12. Cable J, Brangwynne C, Seydoux, G, et al (2019) Phase separation in biology and disease—a symposium report. Ann N Y Acad Sci 1452(1):3–11. PMC6751006.

    Google Scholar 

  13. Wu H, Fuxreiter M (2016) The structure and Dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165(5):1055–1066

    Article  CAS  Google Scholar 

  14. Kim SJ, Fernandez-Martinez J, Nudelman I et al (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555(7697):475–482

    Article  CAS  Google Scholar 

  15. Yamada J, Phillips JL, Patel S et al (2010) A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 9(10):2205–2224

    Article  Google Scholar 

  16. Grunwald D, Singer RH (2010) In vivo imaging of labelled endogenous beta-actin mRNA during nucleocytoplasmic transport. Nature 467(7315):604–607

    Article  Google Scholar 

  17. Rout MP, Aitchison JD, Magnasco MO et al (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13(12):622–628

    Article  CAS  Google Scholar 

  18. Hayama R, Sparks S, Hecht LM et al (2018) Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex. J Biol Chem 293(12):4555–4563

    Article  CAS  Google Scholar 

  19. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125(48):14859–14866

    Article  CAS  Google Scholar 

  20. Frey S, Richter RP, Gorlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314(5800):815–817

    Article  CAS  Google Scholar 

  21. Hough LE, Dutta K, Sparks S et al (2015) The molecular mechanism of nuclear transport revealed by atomic-scale measurements. elife 4. https://doi.org/10.7554/eLife.10027

  22. Shekhtman A, Ghose R, Goger M et al (2002) NMR structure determination and investigation using a reduced proton (REDPRO) labeling strategy for proteins. FEBS Lett 524(1–3):177–182

    Article  CAS  Google Scholar 

  23. Smith Pe, Krohn RI, Hermanson G et al (1985) Measurement of protein using bicinchoninic acid. Analytical biochemistry 150(1):76–85

    Google Scholar 

  24. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  CAS  Google Scholar 

  25. Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696

    Article  CAS  Google Scholar 

  26. Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16

    Article  CAS  Google Scholar 

  27. Tellinghuisen J (2008) Isothermal titration calorimetry at very low c. Anal Biochem 373(2):395–397

    Article  CAS  Google Scholar 

  28. Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11(11):835–841

    Article  CAS  Google Scholar 

  29. Raveh B, Karp JM, Sparks S et al (2016) Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex. Proc Natl Acad Sci U S A 113(18):E2489–E2497

    Article  CAS  Google Scholar 

  30. Krishnamurthy VM, Semetey V, Bracher PJ et al (2007) Dependence of effective molarity on linker length for an intramolecular protein-ligand system. J Am Chem Soc 129(5):1312–1320

    Article  CAS  Google Scholar 

  31. Weber M, Bujotzek A, Haag R (2012) Quantifying the rebinding effect in multivalent chemical ligand-receptor systems. J Chem Phys 137(5):054111

    Article  Google Scholar 

  32. Gargano JM, Ngo T, Kim JY et al (2001) Multivalent inhibition of AB(5) toxins. J Am Chem Soc 123(51):12909–12910

    Article  CAS  Google Scholar 

  33. Waudby CA, Ramos A, Cabrita LD et al (2016) Two-dimensional NMR Lineshape analysis. Sci Rep 6:24826

    Article  CAS  Google Scholar 

  34. Feng H, Zhou BR, Bai Y (2018) Binding affinity and function of the extremely disordered protein complex containing human linker histone H1.0 and Its chaperone ProTalpha. Biochemistry 57(48):6645–6648

    Article  CAS  Google Scholar 

  35. Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1(5):365–374

    Article  CAS  Google Scholar 

  36. Dill K, Bromberg S (2012) Molecular driving forces: statistical thermodynamics in biology, chemistry, physics, and nanoscience. Garland Sci

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cowburn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sparks, S., Hayama, R., Rout, M.P., Cowburn, D. (2020). Analysis of Multivalent IDP Interactions: Stoichiometry, Affinity, and Local Concentration Effect Measurements. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics