Skip to main content

Computer-Aided Design and Manufacturing (CAD/CAM) for Bioprinting

  • Protocol
  • First Online:
3D Bioprinting

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2140))

Abstract

Three-dimensional (3D) printing of human tissues and organs has been an exciting area of research for almost three decades [Bonassar and Vacanti. J Cell Biochem. 72(Suppl 30–31):297–303 (1998)]. The primary goal of bioprinting, presently, is achieving printed constructs with the overarching aim toward fully functional tissues and organs. Technology, in hand with the development of bioinks, has been identified as the key to this success. As a result, the place of computer-aided systems (design and manufacturing—CAD/CAM) cannot be underestimated and plays a significant role in this area. Unlike many reviews in this field, this chapter focuses on the technology required for 3D bioprinting from an initial background followed by the exciting area of medical imaging and how it plays a role in bioprinting. Extraction and classification of tissue types from 3D scans is discussed in addition to modeling and simulation capabilities of scanned systems. After that, the necessary area of transferring the 3D model to the printer is explored. The chapter closes with a discussion of the current state-of-the-art and inherent challenges facing the research domain to achieve 3D tissue and organ printing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonassar LJ, Vacanti CA (1998) Tissue engineering: the first decade and beyond. J Cell Biochem 72(Suppl 30–31):297–303

    Article  PubMed  Google Scholar 

  2. Schulz A, Xu J, Zhu B et al (2017) Interactive design space exploration and optimization for CAD models. ACM Trans Graph 36:1–14

    Article  Google Scholar 

  3. Kocovic P (2017) 3D printing and its impact on the production of fully functional components: emerging research and opportunities: emerging research and opportunities. IGI Global, Hershey

    Book  Google Scholar 

  4. Larson MG, Bengzon F (2013) The finite element method: theory, implementation, and applications. Springer Science & Business Media, New York

    Book  Google Scholar 

  5. Sarcar MMM, Mallikarjuna Rao K, Lalit Narayan K (2008) Computer aided design and manufacturing. PHI Learning Pvt. Ltd., New Delhi

    Google Scholar 

  6. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926

    Article  CAS  PubMed  Google Scholar 

  7. Malda J, Visser J, Melchels FP et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25:5011–5028

    Article  CAS  PubMed  Google Scholar 

  8. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Article  CAS  PubMed  Google Scholar 

  9. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  10. Sheldon DF, McTaggart W (1986) CAD/CAM: computer-aided design and manufacturing. Comput-Aided Eng J 3:34

    Article  Google Scholar 

  11. Elanchezhian C, Shanmuga Sundar G (2007) Computer aided manufacturing. Firewall Media, New Delhi

    Google Scholar 

  12. Sutherland IE (1963) Sketchpad. In: Proceedings of the May 21–23, 1963, spring joint computer conference on—AFIPS ‘63 (Spring)

    Google Scholar 

  13. Sutherland IE (1964) Sketchpad a man-machine graphical communication system. Simulation 2:R–3–R–20

    Google Scholar 

  14. Williamson M (1986) The impact of CAD on aerospace design. Aircr Eng Aerosp Technol 58:17–19

    Article  Google Scholar 

  15. Ross A, Loomis HH (1978) Computer Aided Design of Microprocessor-Based Systems. In: 15th Design Automation Conference

    Google Scholar 

  16. Trivedi AV (1988) Impact of robotics and CAD/CAM on an industrial technology curriculum. In: Robotics and factories of the future ‘87. pp 803–806

    Google Scholar 

  17. Krouse JK (1982) What every engineer should know about computer-aided design and computer-aided manufacturing: the CAD/CAM revolution. CRC Press, Boca Raton

    Google Scholar 

  18. Society of Manufacturing Engineers (1975) CAD/CAM and the computer revolution: selected papers from CAD/CAM I and CAD/CAM II

    Google Scholar 

  19. Kapos T, Ashy LM, Gallucci GO et al (2009) Computer-aided design and computer-assisted manufacturing in prosthetic implant dentistry. Int J Oral Maxillofac Implants 24(Suppl):110–117

    PubMed  Google Scholar 

  20. Parkash H (2016) Digital dentistry: unraveling the mysteries of computer-aided design computer-aided manufacturing in prosthodontic rehabilitation. Contemp Clin Dent 7:289

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sajjad A (2016) Computer-assisted design/computer-assisted manufacturing systems: a revolution in restorative dentistry. J Indian Prosthodont Soc 16:96–99

    Article  PubMed  PubMed Central  Google Scholar 

  22. Finne H (1988) CAD/CAM and social science in Scandinavia. In: Social science research on CAD/CAM. pp 10–26

    Google Scholar 

  23. Adler SW (2000) The Revolution of CAD/CAM in the Casting of Fine Jewelry

    Google Scholar 

  24. Hull CW (1984) Apparatus for production of three-dimensional objects by stereolithography. US Patent

    Google Scholar 

  25. Bandyopadhyay A, Bose S (2015) Additive manufacturing. CRC Press, Boca Raton

    Book  Google Scholar 

  26. Khorram Niaki M, Niaki MK, Nonino F (2017) What is additive manufacturing? Additive systems, processes and materials. In: springer series in Adv Manuf. pp 1–35

    Google Scholar 

  27. Wimpenny DI, Pandey PM, Jyothish Kumar L (2016) Advances in 3D printing & additive manufacturing technologies. Springer, New York

    Google Scholar 

  28. Mannoor MS, Jiang Z, James T et al (2013) 3D printed bionic ears. Nano Lett 13:2634–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koprnicky J, Najman P, Safka J (2017) 3D printed bionic prosthetic hands. In: 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM)

    Google Scholar 

  30. Saunders CG, Foort J, Bannon M et al (1985) Computer aided design of prosthetic sockets for below-knee amputees. Prosthetics Orthot Int 9:17–22

    Article  CAS  Google Scholar 

  31. Baynes S (2016) Printable Prosthetics: The Design of a 3D Printed Swimming Prosthesis: a Thesis Submitted to the Victoria University of Wellington in Fulfilment of the Requirements for the Degree of Master of Design

    Google Scholar 

  32. Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  33. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. traditional factors. Tissue Eng 7:679–689

    Article  CAS  PubMed  Google Scholar 

  34. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. An J, Teoh JEM, Suntornnond R, Chua CK (2015) Design and 3D printing of scaffolds and tissues. Proc Est Acad Sci Eng 1:261–268

    Google Scholar 

  36. Bártolo PJ, Chua CK, Almeida HA et al (2009) Biomanufacturing for tissue engineering: present and future trends. Virtual Phys Prototyp 4:203–216

    Article  Google Scholar 

  37. Leong K, Chua C, Sudarmadji N, Yeong W (2008) Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1:140–152

    Article  CAS  PubMed  Google Scholar 

  38. Mould RF (2018) A century of X-rays and radioactivity in medicine: with emphasis on photographic records of the early years. Routledge, Philadelphia

    Book  Google Scholar 

  39. Suetens P (2017) Fundamentals of medical imaging. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Bertoldi S, Farè S, Tanzi MC (2011) Assessment of scaffold porosity: the new route of micro-CT. J Appl Biomater Biomech 9:165–175

    PubMed  Google Scholar 

  41. Herman GT (2009) Fundamentals of computerized tomography: image reconstruction from projections. Springer, New York

    Book  Google Scholar 

  42. Mankovich NJ, Samson D, Pratt W et al (1994) Surgical planning using three-dimensional imaging and computer modeling. Otolaryngol Clin N Am 27:875–889

    Article  CAS  Google Scholar 

  43. Hall EJ, Brenner DJ (2008) Cancer risks from diagnostic radiology. Br J Radiol 81:362–378

    Article  CAS  PubMed  Google Scholar 

  44. Vlaardingerbroek MT, Boer JA (2013) Magnetic resonance imaging: theory and practice. Springer Science & Business Media, New York

    Google Scholar 

  45. Kim S-G, Bandettini PA (2006) Principles of functional MRI. In: Functional MRI. pp 3–23

    Google Scholar 

  46. Thurston RN, Papadakis EP, Pierce AD (1998) Ultrasonic instruments and devices II: reference for modern instrumentation, techniques, and technology. Elsevier, Amsterdam

    Google Scholar 

  47. Bierig SM, Michelle Bierig S, Jones A (2009) Accuracy and cost comparison of ultrasound versus alternative imaging modalities, including CT, MR, PET, and angiography. J Diagn Med Sonogr 25:138–144

    Article  Google Scholar 

  48. Thomenius KE (2009) Miniaturization of ultrasound scanners. Ultrasound Clin 4:385–389

    Article  Google Scholar 

  49. Hangiandreou NJ (2003) AAPM/RSNA physics tutorial for residents: topics in US. Radiographics 23:1019–1033

    Article  PubMed  Google Scholar 

  50. Zhou Y (2016) The application of ultrasound in 3D bio-printing. Molecules 21:pii: E590. https://doi.org/10.3390/molecules21050590

    Article  CAS  Google Scholar 

  51. Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical image processing on the GPU–past, present and future. Med Image Anal 17:1073–1094

    Article  PubMed  Google Scholar 

  52. Hunt BR (1973) The application of constrained least squares estimation to image restoration by digital computer. IEEE Trans Comput C-22:805–812

    Article  Google Scholar 

  53. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  54. Granlund GH, Knutsson H (1995) Signal processing for computer vision

    Google Scholar 

  55. Elad M (2002) On the origin of the bilateral filter and ways to improve it. IEEE Trans Image Process 11:1141–1151

    Article  PubMed  Google Scholar 

  56. Coupe P, Yger P, Prima S et al (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27:425–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. IEEE (2013) PET/CT image denoising and segmentation based on a multi observation and a multi scale Markov tree model. In: 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)

    Google Scholar 

  58. Xu Z, Bagci U, Seidel J et al (2014) Segmentation based denoising of PET images: an iterative approach via regional means and affinity propagation. Med Image Comput Comput Assist Interv 17:698–705

    PubMed  PubMed Central  Google Scholar 

  59. Liu RW, Shi L, Huang W et al (2014) Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters. Magn Reson Imaging 32:702–720

    Article  PubMed  Google Scholar 

  60. Yang J, Fan J, Ai D et al (2016) Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image. Neurocomputing 195:88–95

    Article  Google Scholar 

  61. Shapiro LG, Stockman GC (2001) Computer vision

    Google Scholar 

  62. Zhang Y-J Image Segmentation in the Last 40 Years. In: Encyclopedia of Information Science and Technology, Second Edition. pp 1818–1823

    Google Scholar 

  63. Roberts LG (1963) Machine perception of three-dimensional solids

    Google Scholar 

  64. Brice CR, Fennema CL (1970) Scene analysis using regions. Artif Intell 1:205–226

    Article  Google Scholar 

  65. Zaitoun NM, Aqel MJ (2015) Survey on image segmentation techniques. Procedia Comput Sci 65:797–806

    Article  Google Scholar 

  66. Barbieri AL, de Arruda GF, Rodrigues FA et al (2011) An entropy-based approach to automatic image segmentation of satellite images. Phys A: Statis Mechan Appl 390:512–518

    Article  CAS  Google Scholar 

  67. Mejia-Inigo R, Barilla-Perez ME, Montes-Venegas HA (2009) Color-based texture image segmentation for vehicle detection. In: 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)

    Google Scholar 

  68. Bosch M, Zhu F, Delp EJ (2011) Segmentation-based video compression using texture and motion models. IEEE J Sel Top Signal Process 5:1366–1377

    Article  Google Scholar 

  69. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yazdani S, Yusof R, Karimian A et al (2015) Image segmentation methods and applications in MRI brain images. IETE Tech Rev 32:413–427

    Article  Google Scholar 

  71. Petitjean C, Dacher J-N (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15:169–184

    Article  PubMed  Google Scholar 

  72. Slomka PJ, Dey D, Sitek A et al (2017) Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices 14:197–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xie J, Jiang Y, Tsui H-T (2005) Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans Med Imaging 24:45–57

    Article  PubMed  Google Scholar 

  74. Mharib AM, Ramli AR, Mashohor S, Mahmood RB (2011) Survey on liver CT image segmentation methods. Artif Intell Rev 37:83–95

    Article  Google Scholar 

  75. Moccia S, De Momi E, El Hadji S, Mattos LS (2018) Blood vessel segmentation algorithms - review of methods, datasets and evaluation metrics. Comput Methods Prog Biomed 158:71–91

    Article  Google Scholar 

  76. Dogdas B, Stout D, Chatziioannou AF, Leahy RM (2007) Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol 52:577–587

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lavdas I, Glocker B, Kamnitsas K et al (2017) Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach. Med Phys 44:5210–5220

    Article  PubMed  Google Scholar 

  78. Ackerman MJ (2016) The visible human project®: From body to bits. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

    Google Scholar 

  79. Danchin A, Médigue C, Gascuel O et al (1991) From data banks to data bases. Res Microbiol 142:913–916

    Article  CAS  PubMed  Google Scholar 

  80. Petrila T, Trif D (2006) Basics of fluid mechanics and introduction to computational fluid dynamics. Springer Science & Business Media, New York

    Google Scholar 

  81. Sun W, Starly B, Nam J, Darling A (2005) Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput Aided Des Appl 37:1097–1114

    Article  Google Scholar 

  82. Lacroix D, Chateau A, Ginebra M-P, Planell JA (2006) Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27:5326–5334

    Article  CAS  PubMed  Google Scholar 

  83. Chai X, van Herk M, van de Kamer JB et al (2011) Finite element based bladder modeling for image-guided radiotherapy of bladder cancer. Med Phys 38:142–150

    Article  PubMed  Google Scholar 

  84. Noritomi P, Xavier T, Silva J (2011) A comparison between BioCAD and some known methods for finite element model generation. In: Innovative developments in virtual and physical prototyping. pp 685–690

    Google Scholar 

  85. Anagnostakis A, Pappas A, Sucaet Y, Waelput W (2014) Digital pathology data brokerage: a standard recommendation for complex digital pathology information web-services. Anal Cell Pathol 2014:1–2

    Article  Google Scholar 

  86. Sucaet Y, Waelput W (2014) Digital pathology. Springer, New York

    Book  Google Scholar 

  87. Paganelli C, Summers P, Gianoli C et al (2017) A tool for validating MRI-guided strategies: a digital breathing CT/MRI phantom of the abdominal site. Med Biol Eng Comput 55:2001–2014

    Article  PubMed  Google Scholar 

  88. Wang C, Yin F-F, Segars WP et al (2017) Development of a computerized 4-D MRI phantom for liver motion study. Technol Cancer Res Treat:1533034617723753

    Google Scholar 

  89. Veress AI, Segars WP, Weiss JA et al (2006) Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models. IEEE Trans Med Imaging 25:1604–1616

    Article  PubMed  Google Scholar 

  90. Mukai N, Takahashi T, Chang Y (2016) Particle-based Simulation on Aortic Valve Behavior with CG Model Generated from CT. In: Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications

    Google Scholar 

  91. Bolwin K, Czekalla B, Frohwein LJ et al (2018) Anthropomorphic thorax phantom for cardio-respiratory motion simulation in tomographic imaging. Phys Med Biol 63:035009

    Article  PubMed  Google Scholar 

  92. Dao TT, Tho M-CHB (2014) Biomechanics of the musculoskeletal system: modeling of data uncertainty and knowledge. Wiley, Hoboken

    Book  Google Scholar 

  93. Kajiyama K (2016) Domestic market trend for medical imaging and radiological system. Nihon Hoshasen Gijutsu Gakkai Zasshi 72:717–719

    Article  PubMed  Google Scholar 

  94. Scholl I, Aach T, Deserno TM, Kuhlen T (2010) Challenges of medical image processing. Comput Sci Res Dev 26:5–13

    Article  Google Scholar 

  95. Suganya R, Rajaram S, Sheik Abdullah A (2018) Big data in medical image processing. CRC Press, Boca Raton

    Book  Google Scholar 

  96. Després P, Jia X (2017) A review of GPU-based medical image reconstruction. Phys Med 42:76–92

    Article  PubMed  Google Scholar 

  97. Smistad E, Falch TL, Bozorgi M et al (2015) Medical image segmentation on GPUs—a comprehensive review. Med Image Anal 20:1–18

    Article  PubMed  Google Scholar 

  98. Pianykh OS (2009) Digital imaging and Communications in Medicine (DICOM): a practical introduction and survival guide. Springer Science & Business Media, New York

    Google Scholar 

  99. Taubman D, Marcellin M (2012) JPEG2000 image compression fundamentals, standards and practice: image compression fundamentals, standards and practice. Springer Science & Business Media, New York

    Google Scholar 

  100. Fryza T (2006) Improving quality of video signals encoded by 3D DCT transform. In: Proceedings ELMAR 2006

    Google Scholar 

  101. Systems Management Council Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines

    Google Scholar 

  102. Evans B (2012) Practical 3D printers: the science and art of 3D printing. Apress, New York

    Book  Google Scholar 

  103. Munaz A, Vadivelu RK, St. John J et al (2016) Three-dimensional printing of biological matters. J Sci Adv Mat Dev 1:1–17

    Google Scholar 

  104. Chang K-H (2013) Product manufacturing and cost estimating using CAD/CAE: the computer aided engineering design series. Academic Press, Cambridge

    Google Scholar 

  105. Locascio A (2001) Manufacturing cost modeling for product design. In: Information-based manufacturing. pp 315–325

    Google Scholar 

  106. Ulrich KT (2015) Does product design really determine 80% of manufacturing cost? (Classic Reprint)

    Google Scholar 

  107. CAD’15 (2015) Knowledge integration in CAD-CAM process chain. In: CAD’15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac D. Fay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fay, C.D. (2020). Computer-Aided Design and Manufacturing (CAD/CAM) for Bioprinting. In: Crook, J.M. (eds) 3D Bioprinting. Methods in Molecular Biology, vol 2140. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0520-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0520-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0519-6

  • Online ISBN: 978-1-0716-0520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics