Skip to main content

Cloning and Heterologous Expression of Protein-Coding Sequences in Escherichia coli

  • Protocol
  • First Online:
Fasciola hepatica

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2137))

  • 575 Accesses

Abstract

Recombinant protein expression is widely used to produce large quantities of protein for diverse uses including functional characterization of selected sequences and vaccination trials. In the postgenomic era, high-throughput techniques that allow us to manipulate several sequences are needed. Cloning by in vivo recombination is a technique that consists in the insertion of a linear DNA into a linearized plasmid DNA by in vivo recombination using a recA+ E. coli strain. This methodology provides high-throughput cloning with high efficiency without the need for restriction enzyme digestion. In this chapter, we describe two protocols for DNA cloning: one using in vivo recombination and the other by using restriction enzymes. We also describe the application of different conditions to produce functional proteins that needs the incorporation of the amino acid selenocysteine (Sec), like thioredoxin-glutathione reductase enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jia B, Jeon CO (2016) High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 6(8):160196

    Article  Google Scholar 

  2. Buscaglia CA, Kissinger JC, Agüero F (2015) Neglected tropical diseases in the post-genomic era. Trends Genet 31(10):539–555

    Article  CAS  Google Scholar 

  3. Fernández-Robledo JA, Vasta GR (2010) Production of recombinant proteins from protozoan parasites. Trends Parasitol 26(5):244–254

    Article  Google Scholar 

  4. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  5. Celie PH, Parret AH, Perrakis A (2016) Recombinant cloning strategies for protein expression. Curr Opin Struct Biol 38:145–154

    Article  CAS  Google Scholar 

  6. Cancela M et al (2015) Fasciola hepatica mucin-encoding gene: expression, variability and its potential relevance in host-parasite relationship. Parasitology 142(14):1673–1681

    Article  CAS  Google Scholar 

  7. Maggioli G et al (2011) A recombinant thioredoxin-glutathione reductase from Fasciola hepatica induces a protective response in rabbits. Exp Parasitol 129(4):323–330

    Article  CAS  Google Scholar 

  8. Bulteau AL, Chavatte L (2015) Update on selenoprotein biosynthesis. Antioxid Redox Signal 23(10):775–794

    Article  CAS  Google Scholar 

  9. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–777

    Article  CAS  Google Scholar 

  10. Parrish JR et al (2004) High-throughput cloning of campylobacter jejuni ORfs by in vivo recombination in Escherichia coli. J Proteome Res 3(3):582–586

    Article  CAS  Google Scholar 

  11. Rengby O et al (2004) Assessment of production conditions for efficient use of Escherichia coli in high-yield heterologous recombinant selenoprotein synthesis. Appl Environ Microbiol 70(9):5159–5167

    Article  CAS  Google Scholar 

  12. Bonilla M et al (2008) Platyhelminth mitochondrial and cytosolic redox homeostasis is controlled by a single thioredoxin glutathione reductase and dependent on selenium and glutathione. J Biol Chem 283(26):17898–17907

    Article  CAS  Google Scholar 

  13. Bar-Noy S, Gorlatov SN, Stadtman TC (2001) Overexpression of wild type and SeCys/Cys mutant of human thioredoxin reductase in E. coli: the role of selenocysteine in the catalytic activity. Free Radic Biol Med 30(1):51–61

    Article  CAS  Google Scholar 

  14. Arnér ES et al (1999) High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. J Mol Biol 292(5):1003–1016

    Article  Google Scholar 

  15. Li C, Reches M, Engelberg-Kulka H (2000) The bulged nucleotide in the Escherichia coli minimal selenocysteine insertion sequence participates in interaction with SelB: a genetic approach. J Bacteriol 182(22):6302–6307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Cancela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cancela, M., Maggioli, G. (2020). Cloning and Heterologous Expression of Protein-Coding Sequences in Escherichia coli. In: Cancela, M., Maggioli, G. (eds) Fasciola hepatica. Methods in Molecular Biology, vol 2137. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0475-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0475-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0474-8

  • Online ISBN: 978-1-0716-0475-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics