Skip to main content

Proteomic Analysis of Rat Hippocampus for Studies of Cognition and Memory Loss with Aging

  • Protocol
  • First Online:
Book cover Clinical and Preclinical Models for Maximizing Healthspan

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2138))

Abstract

This chapter describes a protocol for proteomic profiling of the rat hippocampal proteome using a combination of liquid chromatography tandem mass spectrometry (LC-MS/MS) and data analysis to determine the cellular location of the identified proteins. In the example given, many of these proteins were localized in the plasma membrane and nucleus. These could be of interest in further studies of neurological and neurodegenerative disorders linked with hippocampal dysfunction, such as aging, major depression, and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Budson AE, Solomon PR (2015) Memory loss, Alzheimer’s disease, and dementia: a practical guide for clinicians, 2nd edn. Elsevier, Amsterdam. ISBN-10: 9780323286619

    Google Scholar 

  2. Lashley T, Schott JM, Weston P, Murray CE, Wellington H, Keshavan A et al (2018) Molecular biomarkers of Alzheimer’s disease: progress and prospects. Dis Model Mech 11(5). pii: dmm031781. https://doi.org/10.1242/dmm.031781

  3. Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimer Dement 12:459–509

    Article  Google Scholar 

  4. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M et al (2015) Alzheimer’s Disease International World Alzheimer Report 2015: the global impact of dementia, an analysis of prevalence, incidence, cost and trends. London, 2015. https://www.alz.co.uk/research/world-report-2015

  5. Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B et al (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 13:1–7

    Article  Google Scholar 

  6. Jeong S (2017) Molecular and cellular basis of neurodegeneration in Alzheimer’s disease. Mol Cells 40(9):613–620

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Calderon-Garcidueñas AL, Duyckaerts C (2017) Alzheimer disease. Handb Clin Neurol 145:325–337

    Article  Google Scholar 

  8. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M et al (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807

    Article  CAS  Google Scholar 

  9. Ma RH, Zhang Y, Hong XY, Zhang JF, Wang JZ, Liu GP (2017) Role of microtubule-associated protein tau phosphorylation in Alzheimer’s disease. J Huazhong Univ Sci Technolog Med Sci 37(3):307–312

    Article  CAS  Google Scholar 

  10. Perez Ortiz JM, Swerdlow RH (2019) Mitochondrial dysfunction in Alzheimer’s disease: role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 176:3489. https://doi.org/10.1111/bph.14585

    Article  CAS  PubMed  Google Scholar 

  11. Oliver DMA, Reddy PH (2019) Small molecules as therapeutic drugs for Alzheimer’s disease. Mol Cell Neurosci 96:47–62

    Article  CAS  Google Scholar 

  12. Li M, Long C, Yang L (2015) Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. Biomed Res Int 2015:810548. https://doi.org/10.1155/2015/810548

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sampath D, Sathyanesan M, Newton SS (2017) Cognitive dysfunction in major depression and Alzheimer’s disease is associated with hippocampal-prefrontal cortex dysconnectivity. Neuropsychiatr Dis Treat 13:1509–1519

    Article  CAS  Google Scholar 

  14. Ross JA, Gliebus G, Van Bockstaele EJ (2018) Stress induced neural reorganization: a conceptual framework linking depression and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 85:136–151

    Article  Google Scholar 

  15. de Leon MJ, Convit A, DeSanti S, Golomb J, Tarshish C, Rusinek H et al (1995) The hippocampus in aging and Alzheimer’s disease. Neuroimaging Clin N Am 5(1):1–17

    PubMed  Google Scholar 

  16. Leuner B, Gould E (2010) Structural plasticity and hippocampal function. Annu Rev Psychol 61:111–140, C1–C3

    Article  Google Scholar 

  17. Fellgiebel A, Yakushev I (2011) Diffusion tensor imaging of the hippocampus in MCI and early Alzheimer’s disease. J Alzheimers Dis 26(Suppl 3):257–262

    Article  Google Scholar 

  18. Wingenfeld K, Wolf OT (2014) Stress, memory, and the hippocampus. Front Neurol Neurosci 34:109–120

    Article  Google Scholar 

  19. Van Dam D, De Deyn PP (2011) Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol 164(4):1285–1300

    Article  Google Scholar 

  20. Neha, Sodhi RK, Jaggi AS, Singh N (2014) Animal models of dementia and cognitive dysfunction. Life Sci 109(2):73–86

    Article  CAS  Google Scholar 

  21. Ferreira E, Shaw DM, Oddo S (2016) Identification of learning-induced changes in protein networks in the hippocampi of a mouse model of Alzheimer’s disease. Transl Psychiatry 6(7):e849. https://doi.org/10.1038/tp.2016.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li N, Hu P, Xu T, Chen H, Chen X, Hu J et al (2017) iTRAQ-based proteomic analysis of APPSw,Ind mice provides insights into the early changes in Alzheimer’s disease. Curr Alzheimer Res 14(10):1109–1122

    Article  CAS  Google Scholar 

  23. Kim DK, Park J, Han D, Yang J, Kim A, Woo J et al (2018) Molecular and functional signatures in a novel Alzheimer’s disease mouse model assessed by quantitative proteomics. Mol Neurodegener 13(1):2. https://doi.org/10.1186/s13024-017-0234-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiong F, Ge W, Ma C (2019) Quantitative proteomics reveals distinct composition of amyloid plaques in Alzheimer’s disease. Alzheimers Dement 15(3):429–440

    Article  Google Scholar 

  25. Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Bellier JP et al (2018) Proteome profiling in the hippocampus, medial prefrontal cortex, and striatum of aging rat. Exp Gerontol 111:53–64

    Article  CAS  Google Scholar 

  26. Yang X, Levin Y, Rahmoune H, Ma D, Schöffmann S, Umrania Y et al (2011) Comprehensive two-dimensional liquid chromatography mass spectrometric profiling of the rat hippocampal proteome. Proteomics 11(3):501–505

    Article  CAS  Google Scholar 

  27. https://reactome.org

  28. https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/

  29. Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, London. ISBN-10: 0123919495

    Google Scholar 

  30. Levin Y, Jaros JA, Schwarz E, Bahn S (2010) Multidimensional protein fractionation of blood proteins coupled to data-independent nanoLC-MS/MS analysis. J Proteome 73(3):689–695

    Article  CAS  Google Scholar 

  31. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9(6):1696–1719

    Article  CAS  Google Scholar 

  32. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    Article  CAS  Google Scholar 

  33. Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B et al (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8(3):R39. https://doi.org/10.1186/gb-2007-8-3-r39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, P.C., Rahmoune, H., Martins-de-Souza, D. (2020). Proteomic Analysis of Rat Hippocampus for Studies of Cognition and Memory Loss with Aging. In: Guest, P. (eds) Clinical and Preclinical Models for Maximizing Healthspan. Methods in Molecular Biology, vol 2138. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0471-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0471-7_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0470-0

  • Online ISBN: 978-1-0716-0471-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics