Skip to main content
Book cover

Quantum Dots pp 169–177Cite as

Labeling Neuronal Proteins with Quantum Dots for Single-Molecule Imaging

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2135))

Abstract

Single-molecule imaging has illuminated dynamics and kinetics of neuronal proteins in their native membranes helping us understand their effective roles in the brain. Here, we describe how nanometer-sized fluorescent semiconductors called quantum dots (QD) can be used to label neuronal proteins in a single QD imaging format. We detail two generalizable protocols accompanied by experimental considerations giving the user options in approach tailored to the materials and equipment available. These protocols can be modified for experiments to verify target specificity, as well as single molecule analysis such as single particle tracking and protein clustering.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Harms GS, Cognet L, Lommerse PHM et al (2001) Single-molecule imaging of L-type Ca2+ channels in live cells. Biophys J 81:2639–2646. https://doi.org/10.1016/S0006-3495(01)75907-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marcott PF, Gong S, Donthamsetti P et al (2018) Regional heterogeneity of D2-receptor signaling in the dorsal striatum and nucleus accumbens. Neuron 98:575–587.e574. https://doi.org/10.1016/j.neuron.2018.03.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weiss S (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol 7:724. https://doi.org/10.1038/78941

    Article  CAS  PubMed  Google Scholar 

  4. Vilardaga J-P, Nikolaev VO, Lorenz K et al (2008) Conformational cross-talk between α2A-adrenergic and μ-opioid receptors controls cell signaling. Nat Chem Biol 4:126. https://doi.org/10.1038/nchembio.64

    Article  CAS  PubMed  Google Scholar 

  5. Grenier V, Walker AS, Miller EW (2015) A small-molecule photoactivatable optical sensor of transmembrane potential. J Am Chem Soc 137:10894–10897. https://doi.org/10.1021/jacs.5b05538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mason JN, Farmer H, Tomlinson ID et al (2005) Novel fluorescence-based approaches for the study of biogenic amine transporter localization, activity, and regulation. J Neurosci Methods 143:3–25. https://doi.org/10.1016/j.jneumeth.2004.09.028

    Article  CAS  PubMed  Google Scholar 

  7. Rosenthal SJ, Chang JC, Kovtun O et al (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24. https://doi.org/10.1016/j.chembiol.2010.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kovtun O, Tomlinson ID, Bailey DM et al (2018) Single quantum dot tracking illuminates neuroscience at the nanoscale. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2018.06.019

  9. Thal LB, Bailey DM, Kovtun O et al (2017) Quantum dot toolbox in membrane neurotransmitter transporter research. In: Shukla AK (ed) Chemical and synthetic approaches in membrane biology. Springer New York, New York, NY, pp 219–230. https://doi.org/10.1007/8623_2016_12

    Chapter  Google Scholar 

  10. Rosenthal SJ, Wright DW (2005) Nanobiotechnology protocols. Springer, New York, NY, p 1. https://doi.org/10.1385/159259901X

    Book  Google Scholar 

  11. Chang JC, Rosenthal SJ (2013) Single quantum dot imaging in living cells. In: Weissig V, Elbayoumi T, Olsen M (eds) Cellular and subcellular nanotechnology: methods and protocols. Humana, Totowa, NJ, pp 149–162. https://doi.org/10.1007/978-1-62703-336-7_15

    Chapter  Google Scholar 

  12. McBride J, Treadway J, Feldman LC et al (2006) Structural basis for near unity quantum yield core/shell nanostructures. Nano Lett 6:1496–1501. https://doi.org/10.1021/nl060993k

    Article  CAS  PubMed  Google Scholar 

  13. Yanagawa M, Hiroshima M, Togashi Y et al (2018) Single-molecule diffusion-based estimation of ligand effects on G protein-coupled receptors. Sci Signal 11:eaao1917. https://doi.org/10.1126/scisignal.aao1917

    Article  CAS  PubMed  Google Scholar 

  14. Gussin HA, Tomlinson ID, Muni NJ et al (2010) GABAC receptor binding of quantum-dot conjugates of variable ligand valency. Bioconjug Chem 21:1455–1464. https://doi.org/10.1021/bc100050s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gussin HA, Tomlinson ID, Little DM et al (2006) Binding of muscimol-conjugated quantum dots to GABAC receptors. J Am Chem Soc 128:15701–15713. https://doi.org/10.1021/ja064324k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gussin HA, Tomlinson ID, Cao D et al (2013) Quantum dot conjugates of GABA and muscimol: binding to α1β2γ2 and ρ1 GABAA receptors. ACS Chem Neurosci 4:435–443. https://doi.org/10.1021/cn300144v

    Article  CAS  PubMed  Google Scholar 

  17. Kovtun O, Tomlinson ID, Sakrikar DS et al (2011) Visualization of the cocaine-sensitive dopamine transporter with ligand-conjugated quantum dots. ACS Chem Neurosci 2:370–378. https://doi.org/10.1021/cn200032r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kovtun O, Sakrikar D, Tomlinson ID et al (2015) Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant. ACS Chem Neurosci 6:526–534. https://doi.org/10.1021/cn500202c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thal LB, Tomlinson ID, Quinlan MA et al (2019) Single quantum dot imaging reveals PKCβ-dependent alterations in membrane diffusion and clustering of an attention-deficit hyperactivity disorder/autism/bipolar disorder-associated dopamine transporter variant. ACS Chem Neurosci 10:460–471. https://doi.org/10.1021/acschemneuro.8b00350

    Article  CAS  PubMed  Google Scholar 

  20. Chang JC, Tomlinson ID, Warnement MR et al (2012) Single molecule analysis of serotonin transporter regulation using antagonist-conjugated quantum dots reveals restricted, p38 MAPK-dependent mobilization underlying uptake activation. J Neurosci 32:8919–8929. https://doi.org/10.1523/jneurosci.0048-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bailey DM, Catron MA, Kovtun O et al (2018) Single quantum dot tracking reveals serotonin transporter diffusion dynamics are correlated with cholesterol-sensitive threonine 276 phosphorylation status in primary midbrain neurons. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.8b00214

  22. Tomlinson ID, Kovtun O, Crescentini TM et al (2019) Biotinylated-spiperone ligands for quantum dot labeling of the dopamine D2 receptor in live cell cultures. Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2019.02.024

  23. Rosenthal SJ (2019) Nanotechnology in neuroscience reveals membrane mobility matters. ACS Chem Neurosci 10:30–32. https://doi.org/10.1021/acschemneuro.8b00495

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra J. Rosenthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thal, L.B., Kovtun, O., Rosenthal, S.J. (2020). Labeling Neuronal Proteins with Quantum Dots for Single-Molecule Imaging. In: Fontes, A., Santos, B. (eds) Quantum Dots. Methods in Molecular Biology, vol 2135. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0463-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0463-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0462-5

  • Online ISBN: 978-1-0716-0463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics