Skip to main content

Dextran-Functionalized Quantum Dot Immunoconjugates for Cellular Imaging

  • Protocol
  • First Online:
Book cover Quantum Dots

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2135))

Abstract

Brightly luminescent semiconductor quantum dots (QDs) are ideal materials for cellular imaging and analysis because of their advantageous optical properties and surface area that supports multivalent conjugation of biomolecules. An important design consideration for effective use of these materials is a hydrophilic, biocompatible surface chemistry that provides colloidal stability and minimizes nonspecific interactions with biological molecules and systems. Dextran coatings are able to satisfy these criteria. Despite frequent use of dextran coatings with other nanomaterials (e.g., iron oxide nanoparticles), there has been little development and application of dextran coatings for QDs. In this chapter, we describe methods for the synthesis and characterization of a dextran ligand for QDs, including preparation of an immunoconjugate via tetrameric antibody complexes (TAC). The utility of these immunoconjugates is demonstrated through immunofluorescent labeling and imaging of overexpressed human epidermal growth factor receptor 2 (HER2) on the surface of SK-BR3 breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  PubMed  Google Scholar 

  2. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  3. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  5. Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252

    Article  CAS  PubMed  Google Scholar 

  6. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792–4834

    Article  CAS  PubMed  Google Scholar 

  7. Ren D, Wang B, Hu C, You Z (2017) Quantum dot probes for cellular analysis. Anal Methods 9:2621–2632

    Article  CAS  Google Scholar 

  8. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  PubMed  Google Scholar 

  10. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964

    Article  CAS  Google Scholar 

  11. Algar WR, Susumu K, Delehanty JB, Medintz IL (2011) Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal Chem 83:8826–8837

    Article  CAS  PubMed  Google Scholar 

  12. Ulusoy M, Jonczyk R, Walter J-G, Springer S, Lavrentieva A, Stahl F, Green M, Scheper T (2016) Aqueous synthesis of PEGylated quantum dots with increased colloidal stability and reduced cytotoxicity. Bioconjug Chem 27:414–426

    Article  CAS  PubMed  Google Scholar 

  13. Lesnyak V, Gaponik N, Eychmüller A (2013) Colloidal semiconductor nanocrystals: the aqueous approach. Chem Soc Rev 42:2905:2929

    Article  Google Scholar 

  14. Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Oh E, Susumu K, Stewart MH, Medintz IL, Stratakis E, Parak WJ, Kanaras AG (2019) The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev 119:4819–4880

    Article  CAS  PubMed  Google Scholar 

  15. Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL (2017) Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem Rev 117:536–711

    Article  CAS  PubMed  Google Scholar 

  16. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc A 368:1333–1383

    Article  CAS  PubMed  Google Scholar 

  17. Yong K-T, Law W-C, Hu R, Ye L, Liu L, Swihart MT, Prasad PN (2013) Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 42:1236–1250

    Article  CAS  PubMed  Google Scholar 

  18. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  PubMed  Google Scholar 

  19. Nagy A, Steinbrück A, Gao J, Doggett N, Hollingsworth JA, Iyer R (2012) Comprehensive analysis of the effects of CdSe quantum dot size, charge, and functionalization on primary human lung cells. ACS Nano 6:4748–4762

    Google Scholar 

  20. Tsoi KM, Dai Q, Alman BA, Chan WCW (2013) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46:662–671

    Article  CAS  PubMed  Google Scholar 

  21. Bradburne CE, Delehanty JB, Boeneman Gemmill K, Mei BC, Mattoussi H, Susumu K, Blanco-Canosa JB, Dawson PE, Medintz IL (2013) Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores. Bioconjug Chem 24:1570–1583

    Article  CAS  PubMed  Google Scholar 

  22. Oh E, Liu R, Nel A, Boeneman Gemmill K, Bilal M, Cohen Y, Medintz IL (2016) Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat Nanotechnol 11:479–486

    Article  CAS  PubMed  Google Scholar 

  23. Pathak S, Davidson MC, Silva GA (2007) Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett 7:1839–1845

    Article  CAS  PubMed  Google Scholar 

  24. Su X-L, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76:4806–4810

    Article  CAS  PubMed  Google Scholar 

  25. Sasaki A, Tsukasaki Y, Komatsuzaki A, Sakata T, Yasuda H, Jin T (2015) Recombinant protein (EGFP-protein G)-coated PbS quantum dots for in vitro and in vivo dual fluorescence (visible and second-NIR) imaging of breast tumors. Nanoscale 7:5115–5119

    Article  CAS  PubMed  Google Scholar 

  26. Tasso M, Singh MK, Giovanelli E, Fragola A, Loriette V, Regairaz M, Dautry F, Treussart F, Lenkei Z, Lequeux N, Pons T (2015) Oriented bioconjugation of unmodified antibodies to quantum dots capped with copolymeric ligands as versatile cellular imaging tools. ACS Appl Mater Interfaces 7:26904–26913

    Article  CAS  PubMed  Google Scholar 

  27. Dennler P, Fischer E, Schibli R (2015) Antibody conjugates: from heterogeneous populations to defined reagents. Antibodies 4:197–224

    Article  CAS  Google Scholar 

  28. Boeneman K, Deschamps JR, Buckhout-White S, Prasuhn DE, Blanco-Canosa JB, Dawson PE, Stewart MH, Susumu K, Goldman ER, Ancona M, Medintz IL (2010) Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture. ACS Nano 4:7253–7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heinze T, Liebert T, Heublein B, Hornig S (2006) Functional polymers based on dextran. Adv Polym Sci 205:199–291

    Article  CAS  Google Scholar 

  30. Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44:842–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dewick PM (2006) Essentials of organic chemistry: for students of pharmacy, medicinal chemistry and biological chemistry. John Wiley and Sons, West Sussex

    Google Scholar 

  32. La Rosa M, Avellini T, Lincheneau C, Silvi S, Wright IA, Constable EC, Credi A (2017) An efficient method for the surface functionalization of luminescent quantum dots with lipoic acid based ligands. Eur J Inorg Chem 2017:5143–5151

    Article  CAS  Google Scholar 

  33. Zhan N, Palui G, Mattoussi H (2015) Preparation of compact biocompatible quantum dots using multicoordinating molecular-scale ligands based on a zwitterionic hydrophilic moiety and lipoic acid anchors. Nat Protoc 10:859–874

    Article  PubMed  Google Scholar 

  34. Susumu K, Mei BC, Mattoussi H (2009) Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc 4:424–436

    Article  CAS  PubMed  Google Scholar 

  35. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    Article  CAS  Google Scholar 

  36. Uyeda HT, Medintz IL, Jaiswal JK, Simon SM, Mattoussi H (2005) Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J Am Chem Soc 127:3870–3878

    Article  CAS  PubMed  Google Scholar 

  37. Wang W, Guo Y, Tiede C, Chen S, Kopytynski M, Kong Y, Kulak A, Tomlinson D, Chen R, McPherson M, Zhou D (2017) Ultraefficient cap-exchange protocol to compact biofunctional QDs for sensitive ratiometric biosensing and cell imaging. ACS Appl Mater Interfaces 9:15232–15244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wognum AW, Thomas TE, Lansdorp PM (1987) Use of tetrameric antibody complexes to stain cells for flow cytometry. Cytometry 8:366–371

    Article  CAS  PubMed  Google Scholar 

  39. Harrison MA, Rae IF (2010) General techniques of cell culture. Cambridge University Press, Cambridge

    Google Scholar 

  40. Pollard JW, Walker JM (eds) (1997) Basic cell culture protocols. Humana, Totowa, NJ

    Google Scholar 

  41. Algar WR, Krull UJ (2011) Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer. Sensors 11:6214–6236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Perez Y, Valdivia A, Gomez L, Simpson BK, Villalonga R (2005) Glycosidation of Cu, Zn-superoxide dismutase with end-group aminated dextran: pharmacological and pharmacokinetics properties. Macromol Biosci 5:1220–1225

    Article  CAS  PubMed  Google Scholar 

  43. Chen S, Alves M-H, Save M, Billon L (2014) Synthesis of amphiphilic diblock copolymers derived from renewable dextran by nitroxide mediated polymerization: towards hierarchically structured honeycomb porous films. Polym Chem 5:5310–5319

    Article  CAS  Google Scholar 

  44. Wu M, Petryayeva E, Medintz IL, Algar WR (2014) Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and förster resonance energy transfer. Methods Mol Biol 1199:215–239

    Article  CAS  PubMed  Google Scholar 

  45. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  46. Jasieniak J, Smith L, van Embden J, Mulvaney P, Califano M (2009) Re-examination of the size-dependent absorption properties of CdSe quantum dots. J Phys Chem C 113:19468–19474

    Article  CAS  Google Scholar 

  47. Zylstra J, Amey J, Miska NJ, Pang L, Hine CR, Langer J, Doyle RP, Maye MM (2011) A modular phase transfer and ligand exchange protocol for quantum dots. Langmuir 27:4371–4379

    Article  CAS  PubMed  Google Scholar 

  48. Han H, Zylstra J, Maye MM (2011) Direct attachment of oligonucleotides to quantum dot interfaces. Chem Mater 23:4975–4981

    Article  CAS  Google Scholar 

  49. Cheng N-S (2008) Formula for the viscosity of a glycerol-water mixture. Ind Eng Chem Res 47:3285–3288

    Article  CAS  Google Scholar 

  50. Volk A, Kähler CJ (2018) Density model for aqueous glycerol solutions. Exp Fluids 59:75–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), B.C. Knowledge Development Fund (BCKDF), and the University of British Columbia (UBC) for support of this research. K.R. is grateful for support from UBC through a Four-Year Fellowship (4YF). M.V. T. is grateful for support from NSERC through the CREATE NanoMat training program. W.R.A. is grateful for a Canada Research Chair (Tier 2), a Michael Smith Foundation for Health Research Scholar Award, and an Alfred P. Sloan Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Russ Algar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rees, K., Massey, M., Tran, M.V., Algar, W.R. (2020). Dextran-Functionalized Quantum Dot Immunoconjugates for Cellular Imaging. In: Fontes, A., Santos, B. (eds) Quantum Dots. Methods in Molecular Biology, vol 2135. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0463-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0463-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0462-5

  • Online ISBN: 978-1-0716-0463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics