Skip to main content
Book cover

Quantum Dots pp 213–221Cite as

Resazurin-Based Assay to Evaluate Cell Viability After Quantum Dot Interaction

Part of the Methods in Molecular Biology book series (MIMB,volume 2135)

Abstract

The increasing applications of quantum dots (QDs) as optic tools in life science have stimulated researchers to evaluate the effects of these nanoprobes in cell viability using a variety of methods, especially colorimetric ones. One of the most applied tests is the MTT assay. In comparison to MTT, for example, the resazurin-based method has the main advantage of not evaluating the cells directly, thus eliminating false-positive results that may arise from the overlap of the absorbances of the QD with the colorimetric compound. Therefore, herein, we describe the resazurin assay as an alternative, simple, quick, sensitivity, reproducible, and nontoxic test to evaluate the in vitro cell viability after QD exposure. Moreover, this test presents an additional advantage; the cells remain viable for complementary experimental procedures, such as cell migration or adhesion.

Key words

  • Cytotoxicity
  • Resazurin
  • Resorufin
  • Nanocrystals

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0463-2_12
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0463-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Reshma VG, Mohanan PV (2019) Quantum dots: applications and safety consequences. J Lumin 205:287–298

    CAS  CrossRef  Google Scholar 

  2. Ranjbar-Navazi Z, Omidi Y, Eskandani M et al (2019) Cadmium-free quantum dot-based theranostics. TrAC Trends Anal Chem 118:386–400

    CAS  CrossRef  Google Scholar 

  3. Brkić S (2018) Applicability of quantum dots in biomedical science. In: Ionizing radiation effects and applications. InTech, London, pp 21–39

    Google Scholar 

  4. Li X, Yan Z, Xiao J et al (2017) Cytotoxicity of CdSe quantum dots and corresponding comparison with FITC in cell imaging efficiency. Int J Clin Exp Med 10:753–759

    CAS  Google Scholar 

  5. Vlasceanu G, Grumezescu AM, Gheorghe I et al (2017) Quantum dots for bioimaging and therapeutic applications. In: Nanostructures for novel therapy: synthesis, characterization and applications. Elsevier, Amsterdam, pp 497–515

    CrossRef  Google Scholar 

  6. Matea C, Mocan T, Tabaran F et al (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421–5431

    CAS  CrossRef  Google Scholar 

  7. Cunha CRA, Oliveira ADPR, Firmino TVC et al (2018) Biomedical applications of glyconanoparticles based on quantum dots. Biochim Biophys Acta Gen Subj 1862:427–439

    CAS  CrossRef  Google Scholar 

  8. Pereira MIA, Pereira G, Monteiro CAP et al (2019) Hydrophilic quantum dots functionalized with Gd(III)-DO3A monoamide chelates as bright and effective T1-weighted bimodal nanoprobes. Sci Rep 9:2341

    CrossRef  Google Scholar 

  9. Cabral Filho PE, Cabrera MP, Cardoso ALC et al (2018) Multimodal highly fluorescent-magnetic nanoplatform to target transferrin receptors in cancer cells. Biochim Biophys Acta Gen Subj 1862:2788–2796

    CAS  CrossRef  Google Scholar 

  10. Quarta A, Piccirillo C, Mandriota G et al (2019) Nanoheterostructures (NHS) and their applications in nanomedicine: focusing on in vivo studies. Materials (Basel) 12:37

    CrossRef  Google Scholar 

  11. Levy M, Chowdhury PP, Nagpal P (2019) Quantum dot therapeutics: a new class of radical therapies. J Biol Eng 13:48

    CrossRef  Google Scholar 

  12. Mirnajafizadeh F, Ramsey D, McAlpine S et al (2018) Nanoparticles for bioapplications: study of the cytotoxicity of water dispersible quantum dots. Nano 9:465

    Google Scholar 

  13. Wagner AM, Knipe JM, Orive G et al (2019) Quantum dots in biomedical applications. Acta Biomater 94:44–63

    CAS  CrossRef  Google Scholar 

  14. Tarantini A, Wegner KD, Dussert F et al (2019) Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: a safer by design evaluation. NanoImpact 14:100168

    CrossRef  Google Scholar 

  15. Qu M, Qiu Y, Lv R et al (2019) Exposure to MPA-capped CdTe quantum dots causes reproductive toxicity effects by affecting oogenesis in nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 173:54–62

    CAS  CrossRef  Google Scholar 

  16. Aslantürk ÖS (2018) In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. In: Genotoxicity—a predictable risk to our actual world. InTech, London, pp 1–17

    Google Scholar 

  17. Manshian BB, Soenen SJ, Brown A et al (2016) Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries. Mutagenesis 31:97–106

    CAS  PubMed  Google Scholar 

  18. Skorupska S, Grabowska-Jadach I (2019) Cytotoxicity studies of quantum dots with the electroporation method. Bioelectrochemistry 126:86–91

    CAS  CrossRef  Google Scholar 

  19. Jain AK, Singh D, Dubey K et al (2017) Models and methods for in vitro toxicity. In: In vitro toxicology. Elsevier, Amsterdam, pp 45–65

    Google Scholar 

  20. Borra RC, Lotufo MA, Gagioti SM et al (2009) A simple method to measure cell viability in proliferation and cytotoxicity assays. Braz Oral Res 23:255–262

    CrossRef  Google Scholar 

  21. Carvalho EVMM, Oliveira WF, Coelho LCBB et al (2018) Lectins as mitosis stimulating factors: briefly reviewed. Life Sci 207:152–157

    CAS  CrossRef  Google Scholar 

  22. Schmitt DM, O’Dee DM, Cowan BN et al (2013) The use of resazurin as a novel antimicrobial agent against Francisella tularensis. Front Cell Infect Microbiol 3:1–6

    CrossRef  Google Scholar 

  23. Tenório DPLA, Andrade CG, Cabral Filho PE et al (2015) CdTe quantum dots conjugated to concanavalin A as potential fluorescent molecular probes for saccharides detection in Candida albicans. J Photochem Photobiol B Biol 142:237–243

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Brazilian agencies: Coordenação de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo a Ciência e a Tecnologia do Estado de Pernambuco (FACEPE). This work is also linked to the National Institute of Photonics (INCT-INFo), and LARnano/UFPE.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Pereira, M.I.A., Monteiro, C.A.P., de Oliveira, W.F., Santos, B.S., Fontes, A., Cabral Filho, P.E. (2020). Resazurin-Based Assay to Evaluate Cell Viability After Quantum Dot Interaction. In: Fontes, A., Santos, B. (eds) Quantum Dots. Methods in Molecular Biology, vol 2135. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0463-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0463-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0462-5

  • Online ISBN: 978-1-0716-0463-2

  • eBook Packages: Springer Protocols