Skip to main content

In Vivo Histone Labeling Using Ultrafast trans-Splicing Inteins

  • Protocol
  • First Online:
Expressed Protein Ligation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2133))

Abstract

The development of expressed protein ligation (EPL) widened the scope of questions that could be addressed by mechanistic biochemistry. Protein trans-splicing (PTS) relies on the same basic chemical principles, but utilizes split inteins to tracelessly ligate distinct peptide or polypeptide fragments together with native peptide bonds. Here we present a method to adapt PTS methodologies for their use in live cells, in order to deliver synthetic or native histone modifications. As an example, we provide a protocol to incorporate a small molecule fluorophore into chromatinized histones. The protocol should be easily adaptable to incorporate other modifications to chromatin in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95:6705–6710

    Article  CAS  Google Scholar 

  2. Vila-Perelló M, Muir TW (2010) Biological applications of protein splicing. Cell 143:191–200

    Article  Google Scholar 

  3. Perler FB (2002) InBase: the intein database. Nucleic Acids Res 30:383–384

    Article  CAS  Google Scholar 

  4. Shah NH, Dann GP, Vila-Perelló M et al (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc 134:11338–11341

    Article  CAS  Google Scholar 

  5. Shah NH, Muir TW (2011) Split inteins: nature’s protein ligases. Isr J Chem 51:854–861

    Article  CAS  Google Scholar 

  6. Mootz HD (2009) Split inteins as versatile tools for protein semisynthesis. Chembiochem 10:2579–2589

    Article  CAS  Google Scholar 

  7. Vila-Perelló M, Liu Z, Shah NH et al (2013) Streamlined expressed protein ligation using split inteins. J Am Chem Soc 135:286–292

    Article  Google Scholar 

  8. Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5:446–461

    Article  CAS  Google Scholar 

  9. Juillerat A, Gronemeyer T, Keppler A et al (2003) Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 10:313–317

    Article  CAS  Google Scholar 

  10. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  CAS  Google Scholar 

  11. Giriat I, Muir TW (2003) Protein semi-synthesis in living cells. J Am Chem Soc 125:7180–7181

    Article  CAS  Google Scholar 

  12. Mootz HD, Blum ES, Tyszkiewicz AB et al (2003) Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc 125:10561–10569

    Article  CAS  Google Scholar 

  13. David Y, Vila-Perelló M, Verma S et al (2015) Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat Chem 7:394–402

    Article  CAS  Google Scholar 

  14. Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  CAS  Google Scholar 

  15. Hoye AT, Davoren JE, Wipf P et al (2008) Targeting mitochondria. Acc Chem Res 41:87–97

    Article  CAS  Google Scholar 

  16. Yu H-C, Lu M-C, Li C et al (2013) Targeted delivery of an antigenic peptide to the endoplasmic reticulum: application for development of a peptide therapy for ankylosing spondylitis. PLoS One 8:e77451

    Article  CAS  Google Scholar 

  17. Stevens AJ, Sekar G, Shah NH et al (2017) A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci 114:8538–8543

    Article  CAS  Google Scholar 

  18. Suhorutsenko J, Oskolkov N, Arukuusk P et al (2011) Cell-penetrating peptides, PepFects, show no evidence of toxicity and immunogenicity in vitro and in vivo. Bioconjug Chem 22:2255–2262

    Article  CAS  Google Scholar 

  19. Guidotti G, Brambilla L, Rossi D (2017) Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci 38:406–424

    Article  CAS  Google Scholar 

  20. García-Martín F, Quintanar-Audelo M, García-Ramos Y et al (2006) ChemMatrix, a Poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220

    Article  Google Scholar 

  21. Stevens AJ, Brown ZZ, Shah NH et al (2016) Design of a split intein with exceptional protein splicing activity. J Am Chem Soc 138:2162–2165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the David lab is supported by the Josie Robertson Foundation, the Pershing Square Sohn Cancer Alliance, Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research and the Center for Experimental Therapeutics at Memorial Sloan Kettering Cancer Center, the CCSG core grant P30 CA008748, and the NIH CEBRA award # DA044767. N.A.P. is supported by the NIH T32 GM115327-Tan chemistry-biology interface training grant and the National Science Foundation Graduate Research Fellowship Grant Number 2017239554.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Prescott, N.A., David, Y. (2020). In Vivo Histone Labeling Using Ultrafast trans-Splicing Inteins. In: Vila-Perelló, M. (eds) Expressed Protein Ligation. Methods in Molecular Biology, vol 2133. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0434-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0434-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0433-5

  • Online ISBN: 978-1-0716-0434-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics