Skip to main content

Consumer Versus Dedicated Digital Cameras in Photomicrography

  • Protocol
  • First Online:
Neurohistology and Imaging Techniques

Part of the book series: Neuromethods ((NM,volume 153))

Abstract

A number of consumer digital cameras (compact, bridge, single lens reflex [SLR], and system ones) are of sufficiently high quality to qualify as suitable for photomicrography and represent an affordable alternative to dedicated, high-end cameras typically equipped with very sensitive sensors. When the image sensor resolution is at least 6 or 8 megapixel digital images offer rendering of details that is comparable to conventional micrographs taken on a standard 36 × 24 mm film. In most situations, micrographs taken by high-end (SLR) or other cameras feature no obvious differences in quality, so that even compact or bridge cameras may be used in most cases. Otherwise, for example, in low-light conditions or when very large print formats are required, SLR camera may be needed owing to its low noise, superb resolution and high ISO speed range. Dedicated moderate-cost cameras equipped with CMOS sensors represent an optimal solution for high-resolution video clips and in situation when life-view images have to be presented on high-resolution screens. On the other hand, color images are better rendered by high-end system cameras and ordinary (consumer) cameras. Layout of photosensitive cells in the retina across taxonomical groups is presented as an analogy of image sensor designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 24 September 2021

    The online version of this book had multiple errors as specified below:

Notes

  1. 1.

    CZ.02.1.01/0.0/0.0/16_019/0000729

Abbreviations

AEB:

Automatic exposure bracketing

APS:

Advanced photographic system

CCD:

Charge-coupled device

CMOS:

Complementary metal oxide semiconductor

DRI:

Dynamic range increase

DSLR:

Digital single-lens reflex (mirror reflex) camera

EOS:

Canon camera series (electro-optical system)

fps:

Frames per second

EOS/LER:

Canon EOS to Leica-R (lens adapter)

EV:

Exposure value

HDR/HDRR:

High dynamic range rendering

lp/mm:

Line pairs per millimeter

MFT:

Micro Four Thirds

MP:

Megapixel

NA:

Numerical aperture

NMOS:

N­type metal-oxide-semiconductor

SLR:

Single-lens reflex (mirror reflex) camera

References

  1. Overney NL, Overney GT (2011) The history of photomicrography. Normand and Gregor Overney, California. http://www.microscopy-uk.org.uk/mag/artmar10/go-no-history-photomicro.html

    Google Scholar 

  2. Lawson D (1972) Photomicrography. Academic Press, London and New York. ISBN: 0124397507

    Google Scholar 

  3. Inoué S, Spring K (1997) Video microscopy: the fundamentals. Plenum Press (Springer), New York. ISBN: 9780306455315

    Google Scholar 

  4. Evennett P (2000) The new photomicrography. Proc Roy Microsc Soc 35:253–256. www.quekett.org/wp-content/uploads/2015/09/Evennett_digitalcamera.pdf

    Google Scholar 

  5. Bockaert V (2003) Sensor and pixel sizes. In: 123 of Digital Imaging (chapter 1). http://www.123di.com/123di_contents.php

  6. Altmann R (2003) The sensor. In: Digital photography and image processing (in German). Midas, Zürich, pp 20–24. ISBN: 3907020642

    Google Scholar 

  7. Kinch RJ (online) Making digital camera microscope adapters. http://www.truetex.com/micad.htm

  8. Needham GHN (1958) The practical use of the microscope. Charles C. Thomas, Springfield, IL. https://lccn.loc.gov/57010440

    Google Scholar 

  9. Piper J (2014) Preparing monochromatic images for publication: theoretical considerations and practical implications. Microscopy Today 22(1):18–24. https://doi.org/10.1017/S1551929513001132

    Article  Google Scholar 

  10. Nachtigall W (2015) High-velocity movements (...). Part 1: High speed registrations of fruit explosions in Impatiens (in German). Mikroskopie 2(2):73–78. https://doi.org/10.5414/MKX0065

  11. Piper J (2008) Use of software to enhance depth of field and improve focus in photomicrography. Microsc Anal 113(May):15–19. https://microscopy-analysis.com/magazine

    Google Scholar 

  12. Piper J (2010) Software-based stacking techniques to enhance depth of field and dynamic range in digital photomicrography. In: Hewitson TD, Darby IA (eds) Histology protocols, Methods in molecular biology, vol 611. Springer (Humana Press), New York, pp 193–210. https://doi.org/10.1007/978-1-60327-345-9_16

    Chapter  Google Scholar 

  13. Piper J (2009) Image processing for the optimization of dynamic range in photomicrography. Microsc Anal 117(Jan):5–9. https://microscopy-analysis.com/magazine

    Google Scholar 

  14. Foster B, Sedgewick J (2014) Color integrity: is what you see what you saw? Microsc Today 22(1):12–16. https://doi.org/10.1017/S1551929513001272

    Article  Google Scholar 

  15. Zwier JM, Van Rooij GJ, Hofstraat JW, Brakenhoff GJ (2004) Image calibration in fluorescence microscopy. J Microsc (Oxford) 216(1):15–24. https://doi.org/10.1111/j.0022-2720.2004.01390.x

    Article  CAS  Google Scholar 

  16. Hayden JE (2000) Digital manipulation in scientific images: some ethical considerations. J Biocommun 27(1):11–19. https://www.ncbi.nlm.nih.gov/pubmed/10916744

  17. Cromey DW (2010) Avoiding twisted pixels: ethical guidelines for the appropriate use and manipulation of scientific digital images. Sci Eng Ethics 16(4):639–667. https://doi.org/10.1007/s11948-010-9201-y

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sabesan R, Schmidt BP, Tuten WS, Roorda A (2016) The elementary representation of spatial and color vision in the human retina. Sci Adv 2:e1600797. https://doi.org/10.1126/sciadv.1600797

    Article  PubMed  PubMed Central  Google Scholar 

  19. Horie T, Orii H, Nakagawa M (2005) Structure of ocellus photoreceptors in the ascidian Ciona intestinalis larva as revealed by an anti-arrestin antibody. Develop Neurobiol 65(3):241–250. https://doi.org/10.1002/neu.20197

    Article  CAS  Google Scholar 

  20. Hardie RC, Juusola M (2015) Phototransduction in Drosophila. Curr Opin Neurobiol 34:37–45. https://doi.org/10.1016/j.conb.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  21. Larson DE, Liberman Z, Caga RL (2008) Cellular behavior in the developing Drosophila pupal retina. Mechan Develop 125(3–4):223–232. https://doi.org/10.1016/j.mod.2007.11.007

    Article  CAS  PubMed  Google Scholar 

  22. Francke M, Kreysing M, Mack A, Engelmann J, Karl A, Makarov F, Guck J, Kolle M, Wolburg H, Pusch R, von der Emde G, Schuster S, Wagner H-J, Reichenbach A (2014) Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Progr Retin Eye Res 38:43–69. https://doi.org/10.1016/j.preteyeres.2013.10.001

    Article  Google Scholar 

  23. Alvarez-Delphin K, Morris AC, Snelson CD, Gamse JT, Gupta T, Marlow FL, Mullins MC, Burgess HA, Granato M, Facool JM (2009) Tbx2b is required for ultraviolet photoreceptor cell specification during zebrafish retinal development. Proc Natl Acad Sci U S A 106(6):2023–2028. https://doi.org/10.1073/pnas.0809439106

    Article  Google Scholar 

  24. Martin PR, Grunert U, Chan TL (2000) Spatial order in short-wavelength-sensitive cone photoreceptors: a comparative study of the primate retina. J Opt Soc Am A 17(3):557–567. https://doi.org/10.1364/JOSAA.17.000557

    Article  CAS  Google Scholar 

  25. Ernst Leitz GmbH (1968) Microsix­L exposure meter. Factory print 540­21b (German) or 54­22 (English), Wetzlar (Germany). http://microscope.database.free.fr/540.html

  26. Ernst Leitz GmbH (1966): Microflash device. Factory print 540­27 (German) or 54­25 (English), Wetzlar (Germany). http://microscope.database.free.fr/540.html

  27. Walker D (2007) A tour around the Zeiss Photomicroscope III. Micscape, issue 145. http://www.microscopy-uk.org.uk/mag/nov07ind.html

Download references

Acknowledgments

The authors are grateful to prof. Jan Valenta (Faculty of Mathematics and Physics, Charles University, Prague) for helpful comments. RP acknowledges support via Ministry of Education projects: Chiral Microscopy (LTC17012) and ChemBioDrug.(Footnote 1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Piper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Piper, J., Pelc, R. (2020). Consumer Versus Dedicated Digital Cameras in Photomicrography. In: Pelc, R., Walz, W., Doucette, J.R. (eds) Neurohistology and Imaging Techniques. Neuromethods, vol 153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0428-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0428-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0426-7

  • Online ISBN: 978-1-0716-0428-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics